論文の概要: BERTino: an Italian DistilBERT model
- arxiv url: http://arxiv.org/abs/2303.18121v1
- Date: Fri, 31 Mar 2023 15:07:40 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-03 13:38:05.111947
- Title: BERTino: an Italian DistilBERT model
- Title(参考訳): BERTino:イタリア製のDistilBERTモデル
- Authors: Matteo Muffo, Enrico Bertino
- Abstract要約: 本稿では, DistilBERT モデルである BERTino について紹介する。
我々は, BERTBASE に匹敵する F1 スコアを, 学習速度と推論速度を著しく向上させ, ISDT, イタリアンParTUT, イタリアンWikiNER, およびマルチクラス分類タスクで BERTino を評価した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The recent introduction of Transformers language representation models
allowed great improvements in many natural language processing (NLP) tasks.
However, if on one hand the performances achieved by this kind of architectures
are surprising, on the other their usability is limited by the high number of
parameters which constitute their network, resulting in high computational and
memory demands. In this work we present BERTino, a DistilBERT model which
proposes to be the first lightweight alternative to the BERT architecture
specific for the Italian language. We evaluated BERTino on the Italian ISDT,
Italian ParTUT, Italian WikiNER and multiclass classification tasks, obtaining
F1 scores comparable to those obtained by a BERTBASE with a remarkable
improvement in training and inference speed.
- Abstract(参考訳): 最近のtransformers言語表現モデルの導入は、多くの自然言語処理(nlp)タスクに大きな改善をもたらした。
しかし、このようなアーキテクチャによって達成された性能が驚くべきものであるとすれば、そのユーザビリティはネットワークを構成する多数のパラメータによって制限され、高い計算とメモリ要求をもたらすことになる。
本稿では、イタリア語に特有のbertアーキテクチャの軽量な代替案として初めて提案する、ディチルベルトモデルであるbertinoを提案する。
イタリアisdt,イタリアパルトゥト,イタリアウィキナー,マルチクラス分類タスクにおいてbertinoを評価し,bertbaseで得られたものと同等のf1スコアを得て,トレーニングと推論速度を著しく改善した。
関連論文リスト
- Adapted Multimodal BERT with Layer-wise Fusion for Sentiment Analysis [84.12658971655253]
本稿では,マルチモーダルタスクのためのBERTベースのアーキテクチャであるAdapted Multimodal BERTを提案する。
アダプタはタスクの事前訓練された言語モデルを手動で調整し、融合層はタスク固有の層ワイドな音声視覚情報とテキストBERT表現を融合させる。
われわれは、このアプローチがより効率的なモデルにつながり、微調整されたモデルよりも優れ、ノイズの入力に堅牢であることを示した。
論文 参考訳(メタデータ) (2022-12-01T17:31:42Z) - Sparse*BERT: Sparse Models Generalize To New tasks and Domains [79.42527716035879]
本稿では, 階層的非構造的マグニチュード・プルーニング(Gradual Unstructured Magnitude Pruning)を用いて, ドメイン間およびタスク間を移動可能なモデルについて検討する。
Sparse*BERTは、非構造化バイオメディカルテキスト上で圧縮されたアーキテクチャを事前学習することで、SparseBioBERTとなることを示す。
論文 参考訳(メタデータ) (2022-05-25T02:51:12Z) - MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided
Adaptation [68.30497162547768]
本研究では,Mixture-of-Experts構造を用いてモデルキャパシティと推論速度を向上させるMoEBERTを提案する。
自然言語理解と質問応答タスクにおけるMoEBERTの有効性と有効性を検証する。
論文 参考訳(メタデータ) (2022-04-15T23:19:37Z) - AutoBERT-Zero: Evolving BERT Backbone from Scratch [94.89102524181986]
そこで本稿では,提案するハイブリッドバックボーンアーキテクチャを自動検索するOP-NASアルゴリズムを提案する。
提案するOP-NASの効率を向上させるために,探索アルゴリズムと候補モデルの評価を最適化する。
実験の結果、検索されたアーキテクチャ(AutoBERT-Zero)は、様々な下流タスクにおいてBERTとそのバリエーションの異なるモデル容量を著しく上回っていることがわかった。
論文 参考訳(メタデータ) (2021-07-15T16:46:01Z) - EstBERT: A Pretrained Language-Specific BERT for Estonian [0.3674863913115431]
本稿では,エストニア語のための言語固有BERTモデルであるEstBERTについて述べる。
最近の研究はエストニアのタスクにおける多言語BERTモデルを評価し、ベースラインを上回る結果を得た。
EstBERTに基づくモデルは、6つのタスクのうち5つのタスクにおいて多言語BERTモデルより優れていることを示す。
論文 参考訳(メタデータ) (2020-11-09T21:33:53Z) - Incorporating BERT into Parallel Sequence Decoding with Adapters [82.65608966202396]
本稿では,2種類のBERTモデルをエンコーダとデコーダとして取り出し,シンプルで軽量なアダプタモジュールを導入し,それらを微調整する。
我々は、ソース側およびターゲット側BERTモデルに含まれる情報を協調的に活用できるフレキシブルで効率的なモデルを得る。
我々のフレームワークは、BERTの双方向および条件独立性を考慮した、Mask-Predictという並列シーケンス復号アルゴリズムに基づいている。
論文 参考訳(メタデータ) (2020-10-13T03:25:15Z) - Evaluating Multilingual BERT for Estonian [0.8057006406834467]
複数のNLPタスクにおいて,多言語BERT,多言語蒸留BERT,XLM,XLM-RoBERTaの4つのモデルを評価する。
この結果から,多言語BERTモデルはエストニアの異なるNLPタスクでうまく一般化できることが示唆された。
論文 参考訳(メタデータ) (2020-10-01T14:48:31Z) - ParsBERT: Transformer-based Model for Persian Language Understanding [0.7646713951724012]
本稿ではペルシャ語用単言語BERT(ParsBERT)を提案する。
他のアーキテクチャや多言語モデルと比較すると、最先端のパフォーマンスを示している。
ParsBERTは、既存のデータセットや合成データセットを含む、すべてのデータセットでより高いスコアを取得する。
論文 参考訳(メタデータ) (2020-05-26T05:05:32Z) - What the [MASK]? Making Sense of Language-Specific BERT Models [39.54532211263058]
本稿では,言語固有のBERTモデルにおける技術の現状について述べる。
本研究の目的は,言語固有のBERTモデルとmBERTモデルとの共通点と相違点について概説することである。
論文 参考訳(メタデータ) (2020-03-05T20:42:51Z) - Multilingual Denoising Pre-training for Neural Machine Translation [132.66750663226287]
mBART(mBART)は、大規模モノリンガルコーパスで事前訓練されたシーケンスからシーケンスまでの自動エンコーダである。
mBARTは、完全なシーケンス・ツー・シーケンスモデルを事前訓練する最初の方法の1つである。
論文 参考訳(メタデータ) (2020-01-22T18:59:17Z) - RobBERT: a Dutch RoBERTa-based Language Model [9.797319790710711]
我々はRoBERTaを使ってRobBERTと呼ばれるオランダ語のモデルをトレーニングします。
各種タスクにおけるその性能および微調整データセットサイズの重要性を計測する。
RobBERTは様々なタスクの最先端の結果を改善し、特に小さなデータセットを扱う場合、他のモデルよりもはるかに優れています。
論文 参考訳(メタデータ) (2020-01-17T13:25:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。