Using the inductive-energy participation ratio to characterize a superconducting quantum chip
- URL: http://arxiv.org/abs/2303.18220v2
- Date: Fri, 15 Mar 2024 11:15:46 GMT
- Title: Using the inductive-energy participation ratio to characterize a superconducting quantum chip
- Authors: Ke-Hui Yu, Xiao-Yang Jiao, Li-Jing Jin,
- Abstract summary: We develop an inductive energy participation ratio (IEPR) method for simulating and verifying superconducting quantum chips.
Our work holds the promise of significant enhancements in simulation and verification techniques.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We developed an inductive energy participation ratio (IEPR) method and a streamlined procedure for simulating and verifying superconducting quantum chips. These advancements are increasingly vital in the context of large-scale, fault-tolerant quantum computing. Our approach efficiently extracts the key linear and nonlinear characteristic parameters, as well as the Hamiltonian of a quantum chip layout. In theory, the IEPR method provides insights into the relationship between energy distribution and representation transformation. We demonstrate its practicality by applying it to quantum chip layouts, efficiently obtaining crucial characteristic parameters in both bare and normal representations-an endeavor that challenges existing methods. Our work holds the promise of significant enhancements in simulation and verification techniques and represents a pivotal step towards quantum electronic design automation.
Related papers
- Multi-qubit quantum state preparation enabled by topology optimization [0.0]
We inverse-design nanophotonic cavities enabling the preparation of pure states of pairs and triples of quantum emitters.
Our findings open the way towards the efficient and fast preparation of multiqubit quantum states with engineered features.
arXiv Detail & Related papers (2024-05-24T08:52:22Z) - Simulating the Quantum Rabi Model in Superconducting Qubits at Deep
Strong Coupling [0.8363593384698137]
We address the challenge of achieving deep strong coupling in Quantum Cavity Electrodynamics (cQED).
Our focus is on a transformative digital quantum simulation, employing Trotterization with an augmented number of steps to deconstruct a complex unitary Hamiltonian.
Our goal is to demonstrate deep strong coupling in cQED and understand the advantages of digital methods, particularly in coherent measurement during time evolution with varying photon counts in resonators.
arXiv Detail & Related papers (2024-02-10T14:09:11Z) - Entanglement cost of realizing quantum processes [5.086696108576776]
We develop an efficiently computable tool that reliably estimates the amount of entanglement needed for realizing arbitrary quantum processes.
Our tool applies to the entanglement required to prepare a broad range of quantum states in the regime, surpassing previous methods' limitations.
arXiv Detail & Related papers (2023-11-17T17:07:26Z) - Deep Quantum Circuit Simulations of Low-Energy Nuclear States [51.823503818486394]
We present advances in high-performance numerical simulations of deep quantum circuits.
circuits up to 21 qubits and more than 115,000,000 gates can be efficiently simulated.
arXiv Detail & Related papers (2023-10-26T19:10:58Z) - Exact electronic states with shallow quantum circuits through global
optimisation [0.0]
Quantum computers promise to revolutionise electronic simulations by overcoming the exponential scaling of many-electron problems.
We construct universal wave functions from gate-efficient, symmetry-preserving fermionic operators.
Our algorithm reliably advances the state-of-the-art, defining a new paradigm for quantum simulations featuring strong electron correlation.
arXiv Detail & Related papers (2022-06-30T20:03:11Z) - Simulating groundstate and dynamical quantum phase transitions on a
superconducting quantum computer [0.11744028458220425]
We simulate the groundstate of the quantum Ising model through its quantum critical point on a superconducting quantum device.
Our approach avoids finite-size scaling effects by using sequential quantum circuits inspired by infinite matrix product states.
arXiv Detail & Related papers (2022-05-25T18:05:53Z) - Quantum circuit debugging and sensitivity analysis via local inversions [62.997667081978825]
We present a technique that pinpoints the sections of a quantum circuit that affect the circuit output the most.
We demonstrate the practicality and efficacy of the proposed technique by applying it to example algorithmic circuits implemented on IBM quantum machines.
arXiv Detail & Related papers (2022-04-12T19:39:31Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Quantum-tailored machine-learning characterization of a superconducting
qubit [50.591267188664666]
We develop an approach to characterize the dynamics of a quantum device and learn device parameters.
This approach outperforms physics-agnostic recurrent neural networks trained on numerically generated and experimental data.
This demonstration shows how leveraging domain knowledge improves the accuracy and efficiency of this characterization task.
arXiv Detail & Related papers (2021-06-24T15:58:57Z) - Benchmarking adaptive variational quantum eigensolvers [63.277656713454284]
We benchmark the accuracy of VQE and ADAPT-VQE to calculate the electronic ground states and potential energy curves.
We find both methods provide good estimates of the energy and ground state.
gradient-based optimization is more economical and delivers superior performance than analogous simulations carried out with gradient-frees.
arXiv Detail & Related papers (2020-11-02T19:52:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.