Multi-qubit quantum state preparation enabled by topology optimization
- URL: http://arxiv.org/abs/2405.15361v2
- Date: Mon, 27 May 2024 10:06:44 GMT
- Title: Multi-qubit quantum state preparation enabled by topology optimization
- Authors: A. Miguel-Torcal, A. González-Tudela, F. J. García-Vidal, A. I. Fernández-Domínguez,
- Abstract summary: We inverse-design nanophotonic cavities enabling the preparation of pure states of pairs and triples of quantum emitters.
Our findings open the way towards the efficient and fast preparation of multiqubit quantum states with engineered features.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Using topology optimization, we inverse-design nanophotonic cavities enabling the preparation of pure states of pairs and triples of quantum emitters. Our devices involve moderate values of the dielectric constant, operate under continuous laser driving, and yield fidelities to the target (Bell and W) states approaching unity for distant qubits (several natural wavelengths apart). In the fidelity optimization procedure, our algorithm generates entanglement by maximizing the dissipative coupling between the emitters, which allows the formation of multipartite pure steady states in the driven-dissipative dynamics of the system. Our findings open the way towards the efficient and fast preparation of multiqubit quantum states with engineered features, with potential applications for nonclassical light generation, quantum simulation, and quantum sensing.
Related papers
- Surrogate optimization of variational quantum circuits [1.0546736060336612]
Variational quantum eigensolvers are touted as a near-term algorithm capable of impacting many applications.
Finding algorithms and methods to improve convergence is important to accelerate the capabilities of near-term hardware for VQE.
arXiv Detail & Related papers (2024-04-03T18:00:00Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Photonic counterdiabatic quantum optimization algorithm [3.2174634059872154]
We propose a hybrid quantum- approximate optimization algorithm for quantum computing that is tailored for continuous-variable problems.
We conduct proof-of-principle experiments on an-photo quantum chip.
arXiv Detail & Related papers (2023-07-27T13:33:33Z) - On-the-fly Tailoring towards a Rational Ansatz Design for Digital
Quantum Simulations [0.0]
It is imperative to develop low depth quantum circuits that are physically realizable in quantum devices.
We develop a disentangled ansatz construction protocol that can dynamically tailor an optimal ansatz.
The construction of the ansatz may potentially be performed in parallel quantum architecture through energy sorting and operator commutativity prescreening.
arXiv Detail & Related papers (2023-02-07T11:22:01Z) - A self-consistent field approach for the variational quantum
eigensolver: orbital optimization goes adaptive [52.77024349608834]
We present a self consistent field approach (SCF) within the Adaptive Derivative-Assembled Problem-Assembled Ansatz Variational Eigensolver (ADAPTVQE)
This framework is used for efficient quantum simulations of chemical systems on nearterm quantum computers.
arXiv Detail & Related papers (2022-12-21T23:15:17Z) - Efficient High-Fidelity Flying Qubit Shaping [0.0]
We formulate a theory for stimulated Raman emission which is applicable to a wide range of physical systems.
We find the upper bound for the photonic pulse emission efficiency of arbitrary matter qubit states for imperfect emitters.
Protocols for the production of time-bin encoding and spin-photon entanglement are proposed.
arXiv Detail & Related papers (2022-12-21T17:19:39Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Optimal quantum control via genetic algorithms for quantum state
engineering in driven-resonator mediated networks [68.8204255655161]
We employ a machine learning-enabled approach to quantum state engineering based on evolutionary algorithms.
We consider a network of qubits -- encoded in the states of artificial atoms with no direct coupling -- interacting via a common single-mode driven microwave resonator.
We observe high quantum fidelities and resilience to noise, despite the algorithm being trained in the ideal noise-free setting.
arXiv Detail & Related papers (2022-06-29T14:34:00Z) - Universal compilation for quantum state preparation and tomography [0.0]
We propose a universal compilation-based variational algorithm for the preparation and tomography of quantum states in low-depth quantum circuits.
We evaluate the performance of various unitary topologies and the trainability of different unitarys for getting high efficiency.
arXiv Detail & Related papers (2022-04-25T13:10:33Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.