High Dynamic Range Vector Atomic Magnetometer with 1 part-per-billion Resolution in Earth Field Range
- URL: http://arxiv.org/abs/2304.00214v2
- Date: Tue, 7 May 2024 03:26:53 GMT
- Title: High Dynamic Range Vector Atomic Magnetometer with 1 part-per-billion Resolution in Earth Field Range
- Authors: Tao Wang, Wonjae Lee, Mark Limes, Tom Kornack, Elizabeth Foley, Michael Romalis,
- Abstract summary: We present a high-dynamic-range vector atomic magnetometer based on applying a fast-rotating magnetic field to a pulsed $87$Rb scalar atomic magnetometer.
This method enables simultaneous measurements of the total magnetic field and two polar angles relative to the plane of magnetic field rotation.
- Score: 3.3973386812990904
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a high-dynamic-range vector atomic magnetometer based on applying a fast-rotating magnetic field to a pulsed $^{87}$Rb scalar atomic magnetometer. This method enables simultaneous measurements of the total magnetic field and two polar angles relative to the plane of magnetic field rotation. Using two channels in a gradiometer mode, it provides simultaneous measurements of the total field gradient with a sensitivity of 50 $\mathrm{fT/\sqrt{Hz}}$ (1 part per billion), as well as two polar angles with resolutions of 8 $\mathrm{nrad/\sqrt{Hz}}$ at 50 $\mu$T Earth field strength. The noise spectrums of these measurements are flat down to 1 Hz and 0.1 Hz, respectively. Crucially, this approach avoids several metrological difficulties associated with vector magnetometers and gradiometers. We detail the fundamental, systematic, and practical limits of such vector magnetometers. Notably, we provide a comprehensive study of the systematic effects of vector atomic magnetometers. We introduce a new concept of dynamic heading error and investigate several other systematic effects. A unique cosine-altering rotating field modulation is proposed to cancel out these systematics. Additionally, we derive fundamental limits on the sensitivity of such sensors and demonstrate that the vector sensitivity of the sensor can approach its scalar sensitivity while retaining the accuracy and metrological advantages of scalar sensors. This high-dynamic-range vector magnetometer, with ultrahigh resolution and inherent calibration, is suitable for a wide array of applications.
Related papers
- Optimizing Off-Axis Fields for Two-Axis Magnetometry with Point Defects [0.08738116412366388]
We demonstrate that careful optimization of the static bias field can enable simultaneous measurement of multiple magnetic field components.
This work quantifies the trade-off between the increased frequency shift from second-order Zeeman effects with decreasing contrast as off-axis field components increase.
arXiv Detail & Related papers (2024-04-15T12:50:15Z) - Zero-field optical magnetometer based on spin-alignment [0.2407976495888858]
This research focuses on utilizing a spin-aligned atomic ensemble for magnetometry at zero-field.
The sensitivity and bandwidth of the magnetometer are characterized based on the detected polarization rotation signal.
Lastly, the practical utility of the magnetometer for medical applications is demonstrated by successfully detecting a synthetic cardiac signal.
arXiv Detail & Related papers (2023-08-23T16:15:10Z) - Tensor gradiometry with a diamond magnetometer [0.0]
We present a scanning fiber-coupled nitrogen vacancy (NV) center vector magnetometer.
We calculate the magnetic tensor gradiometry images in real time, and they allow us to detect smaller damage than is possible with vector or scalar imaging.
arXiv Detail & Related papers (2023-07-11T17:03:56Z) - Ferrimagnetic Oscillator Magnetometer [0.0]
The device exhibits a fixed, calibration-free response governed by the electronmagnetic gyro ratio.
The device achieves a minimum sensitivity of 100 fT/$sqrttextHz$ to AC magnetic fields of unknown phase.
arXiv Detail & Related papers (2023-05-31T15:21:57Z) - Improving Sensitivity of an Amplitude-Modulated Magneto-Optical Atomic
Magnetometer using Squeezed Light [10.396267889929488]
A squeezed probe optical field can improve the sensitivity of the magnetic field measurements based on nonlinear magneto-optical rotation.
An independent pump field, amplitude-modulated at the Larmor frequency of the bias magnetic field, allows us to extend the range of most sensitive NMOR measurements to sub-Gauss magnetic fields.
arXiv Detail & Related papers (2022-07-26T15:15:44Z) - DC Quantum Magnetometry Below the Ramsey Limit [68.8204255655161]
We demonstrate quantum sensing of dc magnetic fields that exceeds the sensitivity of conventional $Tast$-limited dc magnetometry by more than an order of magnitude.
We used nitrogen-vacancy centers in a diamond rotating at periods comparable to the spin coherence time, and characterize the dependence of magnetic sensitivity on measurement time and rotation speed.
arXiv Detail & Related papers (2022-03-27T07:32:53Z) - Surpassing the Energy Resolution Limit with ferromagnetic torque sensors [55.41644538483948]
We evaluate the optimal magnetic field resolution taking into account the thermomechanical noise and the mechanical detection noise at the standard quantum limit.
We find that the Energy Resolution Limit (ERL), pointed out in recent literature, can be surpassed by many orders of magnitude.
arXiv Detail & Related papers (2021-04-29T15:44:12Z) - Ferromagnetic Gyroscopes for Tests of Fundamental Physics [49.853792068336034]
A ferromagnetic gyroscope (FG) is a ferromagnet whose angular momentum is dominated by electron spin polarization and that will precess under the action of an external torque.
We model and analyze FG dynamics and sensitivity, focusing on practical schemes for experimental realization.
arXiv Detail & Related papers (2020-10-17T07:13:50Z) - High-Frequency Gravitational-Wave Detection Using a Chiral Resonant
Mechanical Element and a Short Unstable Optical Cavity [59.66860395002946]
We suggest the measurement of the twist of a chiral mechanical element induced by a gravitational wave.
The induced twist rotates a flat optical mirror on top of this chiral element, leading to the deflection of an incident laser beam.
We estimate a gravitational wave strain sensitivity between 10-21/sqrtHz and 10-23/sqrtHz at around 10 kHz frequency.
arXiv Detail & Related papers (2020-07-15T20:09:43Z) - Gravity Probe Spin: Prospects for measuring general-relativistic
precession of intrinsic spin using a ferromagnetic gyroscope [51.51258642763384]
An experimental test at the intersection of quantum physics and general relativity is proposed.
The behavior of intrinsic spin in spacetime is an experimentally open question.
A measurement is possible by using mm-scale ferromagnetic gyroscopes in orbit around the Earth.
arXiv Detail & Related papers (2020-06-16T17:18:44Z) - Direct control of high magnetic fields for cold atom experiments based
on NV centers [50.591267188664666]
In cold atomic gases the interactions between the atoms are directly controllable through external magnetic fields.
Here, we overcome the limitations of such an indirect control through a direct feedback scheme.
We achieve a control of better than 1 ppm after 20 minutes of integration time, ensuring high long-term stability for experiments.
arXiv Detail & Related papers (2020-03-18T09:03:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.