論文の概要: Finding Pareto Efficient Redistricting Plans with Short Bursts
- arxiv url: http://arxiv.org/abs/2304.00427v1
- Date: Sun, 2 Apr 2023 02:17:37 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-04 18:07:30.882554
- Title: Finding Pareto Efficient Redistricting Plans with Short Bursts
- Title(参考訳): 短いバーストによるパレート効率的な再分級計画の発見
- Authors: Cory McCartan
- Abstract要約: この研究ノートは、最近提案された多重基準ケースを扱うための単一基準最適化手法を拡張している。
本研究では,本手法の実証的な性能を現実的な環境で検証し,期待通りに振る舞うことができ,アルゴリズム的パラメータにはあまり敏感でないことを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Redistricting practitioners must balance many competing constraints and
criteria when drawing district boundaries. To aid in this process, researchers
have developed many methods for optimizing districting plans according to one
or more criteria. This research note extends a recently-proposed
single-criterion optimization method, short bursts (Cannon et al., 2023), to
handle the multi-criterion case, and in doing so approximate the Pareto
frontier for any set of constraints. We study the empirical performance of the
method in a realistic setting and find it behaves as expected and is not very
sensitive to algorithmic parameters. The proposed approach, which is
implemented in open-source software, should allow researchers and practitioners
to better understand the tradeoffs inherent to the redistricting process.
- Abstract(参考訳): 再帰的な実践者は、地区の境界を描く際に多くの競合する制約と基準をバランスさせなければならない。
このプロセスを支援するために、研究者は1つ以上の基準に従って地区計画の最適化方法を開発した。
本研究は、最近提案されている単一基準最適化手法である short bursts (cannon et al., 2023) を拡張し、マルチ基準ケースを扱い、任意の制約に対してパレートフロンティアを近似する。
本手法は, 実環境において経験的性能を検証した結果, 期待通りに動作し, アルゴリズムパラメータにはあまり敏感でないことがわかった。
提案手法はオープンソースソフトウェアで実装されており、研究者や実践者が再制限プロセスに固有のトレードオフをよりよく理解できるようにする。
関連論文リスト
- Evolutionary Algorithm with Detection Region Method for Constrained Multi-Objective Problems with Binary Constraints [9.764702512419946]
本稿では,検出領域法に基づくDRMCMOと呼ばれる新しいアルゴリズムを提案する。
DRMCMOでは、検出領域は収束を高めるために実現可能なソリューションを動的に監視し、住民が局所的最適から逃れるのを助ける。
バイナリ制約のあるCMOPのベンチマークテスト問題として、既存の3つのテストスイートを変更しました。
論文 参考訳(メタデータ) (2024-11-13T08:39:04Z) - FootstepNet: an Efficient Actor-Critic Method for Fast On-line Bipedal Footstep Planning and Forecasting [0.0]
本研究では,障害物のある環境下を移動するための効率的なフットステップ計画法を提案する。
また,地域目標の異なる候補に到達するのに必要なステップ数を素早く推定できる予測手法を提案する。
本研究は,RoboCup 2023コンペティションにおいて,シミュレーション結果と,子供サイズのヒューマノイドロボットへの展開によるアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2024-03-19T09:48:18Z) - Inference for an Algorithmic Fairness-Accuracy Frontier [0.9147443443422864]
We provide a consistent estimator for a theoretical fairness-accuracy frontier forward by Liang, Lu and Mu (2023)
フェアネス文学で注目されている仮説を検証するための推論手法を提案する。
サンプルサイズが大きくなるにつれて, 推定された支持関数が密なプロセスに収束することを示す。
論文 参考訳(メタデータ) (2024-02-14T00:56:09Z) - An Optimal Algorithm for the Real-Valued Combinatorial Pure Exploration
of Multi-Armed Bandit [65.268245109828]
多武装バンディット(R-CPE-MAB)の真価純探査問題について検討する。
既存のR-CPE-MABの手法は、いわゆるトランスダクティブ線形帯域の特殊な場合と見なすことができる。
本稿では,差分探索アルゴリズム (CombGapE) を提案する。
論文 参考訳(メタデータ) (2023-06-15T15:37:31Z) - Tight Guarantees for Interactive Decision Making with the
Decision-Estimation Coefficient [51.37720227675476]
我々は、決定推定係数の新たな変種を導入し、それを用いて、3つの面における事前の作業を改善する新しい下界を導出する。
我々は同じ量でスケールした後悔について上界を与え、フォスター等における上界と下界の間のギャップの1つを除いて全てを閉じる。
この結果は、後悔のフレームワークとPACフレームワークの両方に適用され、我々が期待するいくつかの新しい分析とアルゴリズム設計技術を利用して、より広範な利用が期待できる。
論文 参考訳(メタデータ) (2023-01-19T18:24:08Z) - Reliable Causal Discovery with Improved Exact Search and Weaker
Assumptions [17.097192646470372]
線形ガウス設定における正確なスコアベース手法のスケーラビリティを向上させるためのいくつかの戦略を導入する。
我々は,忠実度よりも厳密な仮定を必要とする逆共分散行列の支持に基づく超構造推定法を開発した。
また,各変数とその近傍が生成する局所クラスタを,超構造内の2つのホップ内で正確に探索する局所探索戦略を提案する。
論文 参考訳(メタデータ) (2022-01-14T20:52:30Z) - Parallelizing Contextual Linear Bandits [82.65675585004448]
並列な)コンテキスト線形バンディットアルゴリズムの族を提示し、その遺残はそれらの完全シーケンシャルなアルゴリズムとほぼ同一である。
また,これらの並列アルゴリズムについて,材料発見や生物配列設計の問題など,いくつかの領域で実証評価を行った。
論文 参考訳(メタデータ) (2021-05-21T22:22:02Z) - On the Optimality of Batch Policy Optimization Algorithms [106.89498352537682]
バッチポリシー最適化は、環境と対話する前に既存のデータをポリシー構築に活用することを検討する。
信頼調整インデックスアルゴリズムは楽観的,悲観的,中立的いずれであってもミニマックス最適であることを示す。
最適値予測の本来の難易度を考慮した新しい重み付き最小値基準を提案する。
論文 参考訳(メタデータ) (2021-04-06T05:23:20Z) - Variance-Reduced Off-Policy Memory-Efficient Policy Search [61.23789485979057]
政治政策の最適化は強化学習において難しい問題である。
オフポリシーアルゴリズムはメモリ効率が高く、オフポリシーサンプルから学ぶことができる。
論文 参考訳(メタデータ) (2020-09-14T16:22:46Z) - Sequential Monte Carlo for Sampling Balanced and Compact Redistricting
Plans [0.0]
本稿では,現実的な目標分布に収束する再限定計画のサンプルを生成する,SMC(Sequential Monte Carlo)アルゴリズムを提案する。
提案アルゴリズムの精度を,すべての再分割計画を列挙可能な小さなマップを用いて検証する。
次に、SMCアルゴリズムを用いて、ペンシルベニア州の最近の有名な再分権事件において、関係当事者が提出したいくつかの地図のパルチザン的含意を評価する。
論文 参考訳(メタデータ) (2020-08-13T23:26:34Z) - Lower bounds in multiple testing: A framework based on derandomized
proxies [107.69746750639584]
本稿では, 各種コンクリートモデルへの適用例を示す, デランドマイズに基づく分析戦略を提案する。
これらの下界のいくつかを数値シミュレーションし、Benjamini-Hochberg (BH) アルゴリズムの実際の性能と密接な関係を示す。
論文 参考訳(メタデータ) (2020-05-07T19:59:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。