論文の概要: Dialog-to-Actions: Building Task-Oriented Dialogue System via
Action-Level Generation
- arxiv url: http://arxiv.org/abs/2304.00884v1
- Date: Mon, 3 Apr 2023 11:09:20 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-04 15:48:01.859881
- Title: Dialog-to-Actions: Building Task-Oriented Dialogue System via
Action-Level Generation
- Title(参考訳): 対話対話:アクションレベル生成によるタスク指向対話システムの構築
- Authors: Yuncheng Hua, Xiangyu Xi, Zheng Jiang, Guanwei Zhang, Chaobo Sun,
Guanglu Wan, Wei Ye
- Abstract要約: 本稿では,アクションレベル生成によるタスク指向対話システムを提案する。
具体的には、まず大規模な対話から対話行動を構築し、対話行動のシーケンスとして各自然言語(NL)応答を表現する。
本研究では,対話履歴を入力とし,対話行動のシーケンスを出力するシーケンス・ツー・シーケンスモデルを訓練する。
- 参考スコア(独自算出の注目度): 7.110201160927713
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: End-to-end generation-based approaches have been investigated and applied in
task-oriented dialogue systems. However, in industrial scenarios, existing
methods face the bottlenecks of controllability (e.g., domain-inconsistent
responses, repetition problem, etc) and efficiency (e.g., long computation
time, etc). In this paper, we propose a task-oriented dialogue system via
action-level generation. Specifically, we first construct dialogue actions from
large-scale dialogues and represent each natural language (NL) response as a
sequence of dialogue actions. Further, we train a Sequence-to-Sequence model
which takes the dialogue history as input and outputs sequence of dialogue
actions. The generated dialogue actions are transformed into verbal responses.
Experimental results show that our light-weighted method achieves competitive
performance, and has the advantage of controllability and efficiency.
- Abstract(参考訳): タスク指向対話システムでは、エンドツーエンド生成に基づくアプローチが研究され、適用されている。
しかし、産業シナリオでは、既存の手法は制御可能性(ドメイン一貫性のない応答、繰り返し問題など)と効率(例えば、長い計算時間など)のボトルネックに直面します。
本稿では,アクションレベル生成によるタスク指向対話システムを提案する。
具体的には,まず,大規模対話から対話行動を構築し,対話行動の列として各自然言語(nl)応答を表現する。
さらに、対話履歴を入力として対話アクションのシーケンスを出力するシーケンスツーシーケンスモデルをトレーニングする。
生成された対話動作は、音声応答に変換される。
実験の結果, 軽量化手法は競争性能が向上し, 制御性と効率性が向上した。
関連論文リスト
- A Static and Dynamic Attention Framework for Multi Turn Dialogue Generation [37.79563028123686]
オープンドメインマルチターン対話生成では,対話履歴の文脈意味論をモデル化することが不可欠である。
従来の研究は、オープンドメインマルチターン対話生成における階層的再帰エンコーダデコーダフレームワークの有効性を検証していた。
本稿では,対話履歴をモデル化し,オープンドメインのマルチターン対話応答を生成する静的かつ動的アテンションに基づくアプローチを提案する。
論文 参考訳(メタデータ) (2024-10-28T06:05:34Z) - Unsupervised Extraction of Dialogue Policies from Conversations [3.102576158218633]
本稿では,データセットから対話ポリシーを抽出する上で,Large Language Modelがいかに有効かを示す。
そこで我々は,制御可能かつ解釈可能なグラフベースの手法を用いて対話ポリシーを生成する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-06-21T14:57:25Z) - DiactTOD: Learning Generalizable Latent Dialogue Acts for Controllable
Task-Oriented Dialogue Systems [15.087619144902776]
本稿では,潜在空間における対話行動を表現する対話行動モデル(DiactTOD)を提案する。
大規模なコーパスで事前トレーニングを行うと、DiactTODは対話を予測し制御し、制御可能な応答を生成する。
論文 参考訳(メタデータ) (2023-08-01T23:29:16Z) - Controllable Mixed-Initiative Dialogue Generation through Prompting [50.03458333265885]
混合開始対話タスクには、情報の繰り返し交換と会話制御が含まれる。
エージェントは、ポリシープランナーが定める特定の対話意図や戦略に従う応答を生成することにより、コントロールを得る。
標準的なアプローチは、これらの意図に基づいて生成条件を実行するために、訓練済みの言語モデルを微調整している。
代わりに、条件生成の微調整に代えて、大きな言語モデルをドロップインで置き換えるように促します。
論文 参考訳(メタデータ) (2023-05-06T23:11:25Z) - Act-Aware Slot-Value Predicting in Multi-Domain Dialogue State Tracking [5.816391291790977]
対話状態追跡(DST)は、人間と機械の相互作用を追跡し、対話を管理するための状態表現を生成することを目的としている。
機械読解の最近の進歩は、対話状態追跡のための分類型と非分類型のスロットの両方を予測する。
我々は対話行為を定式化し、機械読解の最近の進歩を活用し、対話状態追跡のためのカテゴリー型と非カテゴリ型の両方のスロットを予測する。
論文 参考訳(メタデータ) (2022-08-04T05:18:30Z) - User Satisfaction Estimation with Sequential Dialogue Act Modeling in
Goal-oriented Conversational Systems [65.88679683468143]
我々は,ユーザ満足度を予測するために,対話行動の逐次的ダイナミクスを取り入れた新しいフレームワーク,すなわちUSDAを提案する。
USDAは、ユーザの満足度を予測するために、コンテンツと行動機能の連続的な遷移を対話に取り入れている。
4つのベンチマーク目標指向対話データセットによる実験結果から,提案手法はUSEの既存手法よりも大幅に優れていた。
論文 参考訳(メタデータ) (2022-02-07T02:50:07Z) - UniDS: A Unified Dialogue System for Chit-Chat and Task-oriented
Dialogues [59.499965460525694]
上記の2つのスキルを備えた統合対話システム(UniDS)を提案する。
我々は、チャットとタスク指向の対話の両方に対応可能な統合対話データスキーマを設計する。
我々は、事前訓練されたチャット対話モデルから混合対話データでUniDSを訓練する。
論文 参考訳(メタデータ) (2021-10-15T11:56:47Z) - "How Robust r u?": Evaluating Task-Oriented Dialogue Systems on Spoken
Conversations [87.95711406978157]
本研究は、音声タスク指向会話における新しいベンチマークを示す。
マルチドメイン対話状態追跡と知識基底型対話モデルについて検討する。
我々のデータセットは,タスク指向対話システムの音声によるベンチマークを可能にする。
論文 参考訳(メタデータ) (2021-09-28T04:51:04Z) - Policy-Driven Neural Response Generation for Knowledge-Grounded Dialogue
Systems [18.375851346138155]
Seq2seqのニューラルレスポンス生成アプローチは、生成されたレスポンスの内容やスタイルを制御するための明確なメカニズムを持っていない。
本稿では、対話ポリシーを用いて、アクションプランの形式でターゲット応答の内容とスタイルを計画する。
文レベルで動作させる基本対話ポリシーは,ターンレベル生成よりも応答性がよいことを示す。
論文 参考訳(メタデータ) (2020-05-26T06:09:57Z) - TOD-BERT: Pre-trained Natural Language Understanding for Task-Oriented
Dialogue [113.45485470103762]
本研究では,言語モデリングのためのタスク指向対話データセットを,人間とマルチターンの9つに統合する。
事前学習時の対話動作をモデル化するために,ユーザトークンとシステムトークンをマスク付き言語モデルに組み込む。
論文 参考訳(メタデータ) (2020-04-15T04:09:05Z) - Recent Advances and Challenges in Task-oriented Dialog System [63.82055978899631]
課題指向対話システムは、学術・産業社会でますます注目を集めている。
タスク指向ダイアログシステムにおける3つの重要なトピックについて論じる。(1)低リソース環境でのダイアログモデリングを容易にするデータ効率の改善、(2)ダイアログポリシー学習のためのマルチターンダイナミクスのモデリング、(3)ダイアログモデルへのドメイン知識の統合。
論文 参考訳(メタデータ) (2020-03-17T01:34:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。