Real-time 6K Image Rescaling with Rate-distortion Optimization
- URL: http://arxiv.org/abs/2304.01064v2
- Date: Fri, 19 May 2023 12:34:17 GMT
- Title: Real-time 6K Image Rescaling with Rate-distortion Optimization
- Authors: Chenyang Qi, Xin Yang, Ka Leong Cheng, Ying-Cong Chen, Qifeng Chen
- Abstract summary: We propose a novel framework for real-time 6K rate-distortion-aware image rescaling.
Our framework embeds an HR image into a JPEG LR thumbnail by an encoder.
Then, an efficient frequency-aware decoder reconstructs a high-fidelity HR image from the LR one in real time.
- Score: 53.61374658914277
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Contemporary image rescaling aims at embedding a high-resolution (HR) image
into a low-resolution (LR) thumbnail image that contains embedded information
for HR image reconstruction. Unlike traditional image super-resolution, this
enables high-fidelity HR image restoration faithful to the original one, given
the embedded information in the LR thumbnail. However, state-of-the-art image
rescaling methods do not optimize the LR image file size for efficient sharing
and fall short of real-time performance for ultra-high-resolution (e.g., 6K)
image reconstruction. To address these two challenges, we propose a novel
framework (HyperThumbnail) for real-time 6K rate-distortion-aware image
rescaling. Our framework first embeds an HR image into a JPEG LR thumbnail by
an encoder with our proposed quantization prediction module, which minimizes
the file size of the embedding LR JPEG thumbnail while maximizing HR
reconstruction quality. Then, an efficient frequency-aware decoder reconstructs
a high-fidelity HR image from the LR one in real time. Extensive experiments
demonstrate that our framework outperforms previous image rescaling baselines
in rate-distortion performance and can perform 6K image reconstruction in real
time.
Related papers
- Efficient Test-Time Adaptation for Super-Resolution with Second-Order
Degradation and Reconstruction [62.955327005837475]
Image super-resolution (SR) aims to learn a mapping from low-resolution (LR) to high-resolution (HR) using paired HR-LR training images.
We present an efficient test-time adaptation framework for SR, named SRTTA, which is able to quickly adapt SR models to test domains with different/unknown degradation types.
arXiv Detail & Related papers (2023-10-29T13:58:57Z) - Self-Asymmetric Invertible Network for Compression-Aware Image Rescaling [6.861753163565238]
In real-world applications, most images are compressed for transmission.
We propose the Self-Asymmetric Invertible Network (SAIN) for compression-aware image rescaling.
arXiv Detail & Related papers (2023-03-04T08:33:46Z) - Real Image Super-Resolution using GAN through modeling of LR and HR
process [20.537597542144916]
We propose a learnable adaptive sinusoidal nonlinearities incorporated in LR and SR models by directly learn degradation distributions.
We demonstrate the effectiveness of our proposed approach in quantitative and qualitative experiments.
arXiv Detail & Related papers (2022-10-19T09:23:37Z) - Hierarchical Conditional Flow: A Unified Framework for Image
Super-Resolution and Image Rescaling [139.25215100378284]
We propose a hierarchical conditional flow (HCFlow) as a unified framework for image SR and image rescaling.
HCFlow learns a mapping between HR and LR image pairs by modelling the distribution of the LR image and the rest high-frequency component simultaneously.
To further enhance the performance, other losses such as perceptual loss and GAN loss are combined with the commonly used negative log-likelihood loss in training.
arXiv Detail & Related papers (2021-08-11T16:11:01Z) - LAPAR: Linearly-Assembled Pixel-Adaptive Regression Network for Single
Image Super-Resolution and Beyond [75.37541439447314]
Single image super-resolution (SISR) deals with a fundamental problem of upsampling a low-resolution (LR) image to its high-resolution (HR) version.
This paper proposes a linearly-assembled pixel-adaptive regression network (LAPAR) to strike a sweet spot of deep model complexity and resulting SISR quality.
arXiv Detail & Related papers (2021-05-21T15:47:18Z) - Real-World Super-Resolution of Face-Images from Surveillance Cameras [25.258587196435464]
We propose a novel framework for generation of realistic LR/HR training pairs.
Our framework estimates realistic blur kernels, noise distributions, and JPEG compression artifacts to generate LR images with similar image characteristics as the ones in the source domain.
For better perceptual quality we use a Generative Adrial Network (GAN) based SR model where we have exchanged the commonly used VGG-loss [24] with LPIPS-loss [52]
arXiv Detail & Related papers (2021-02-05T11:38:30Z) - Super-Resolution of Real-World Faces [3.4376560669160394]
Real low-resolution (LR) face images contain degradations which are too varied and complex to be captured by known downsampling kernels.
In this paper, we propose a two module super-resolution network where the feature extractor module extracts robust features from the LR image.
We train a degradation GAN to convert bicubically downsampled clean images to real degraded images, and interpolate between the obtained degraded LR image and its clean LR counterpart.
arXiv Detail & Related papers (2020-11-04T17:25:54Z) - Closed-loop Matters: Dual Regression Networks for Single Image
Super-Resolution [73.86924594746884]
Deep neural networks have exhibited promising performance in image super-resolution.
These networks learn a nonlinear mapping function from low-resolution (LR) images to high-resolution (HR) images.
We propose a dual regression scheme by introducing an additional constraint on LR data to reduce the space of the possible functions.
arXiv Detail & Related papers (2020-03-16T04:23:42Z) - PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of
Generative Models [77.32079593577821]
PULSE (Photo Upsampling via Latent Space Exploration) generates high-resolution, realistic images at resolutions previously unseen in the literature.
Our method outperforms state-of-the-art methods in perceptual quality at higher resolutions and scale factors than previously possible.
arXiv Detail & Related papers (2020-03-08T16:44:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.