PromptORE -- A Novel Approach Towards Fully Unsupervised Relation
Extraction
- URL: http://arxiv.org/abs/2304.01209v1
- Date: Fri, 24 Mar 2023 12:55:35 GMT
- Title: PromptORE -- A Novel Approach Towards Fully Unsupervised Relation
Extraction
- Authors: Pierre-Yves Genest (Alteca, DRIM), Pierre-Edouard Portier (DRIM),
El\"od Egyed-Zsigmond (DRIM), Laurent-Walter Goix (Alteca)
- Abstract summary: Unsupervised Relation Extraction (RE) aims to identify relations between entities in text, without having access to labeled data during training.
We propose PromptORE, a ''Prompt-based Open Relation Extraction'' model.
We adapt the novel prompt-tuning paradigm to work in an unsupervised setting, and use it to embed sentences expressing a relation.
We show that PromptORE consistently outperforms state-of-the-art models with a relative gain of more than 40% in B 3, V-measure and ARI.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised Relation Extraction (RE) aims to identify relations between
entities in text, without having access to labeled data during training. This
setting is particularly relevant for domain specific RE where no annotated
dataset is available and for open-domain RE where the types of relations are a
priori unknown. Although recent approaches achieve promising results, they
heavily depend on hyperparameters whose tuning would most often require labeled
data. To mitigate the reliance on hyperparameters, we propose PromptORE, a
''Prompt-based Open Relation Extraction'' model. We adapt the novel
prompt-tuning paradigm to work in an unsupervised setting, and use it to embed
sentences expressing a relation. We then cluster these embeddings to discover
candidate relations, and we experiment different strategies to automatically
estimate an adequate number of clusters. To the best of our knowledge,
PromptORE is the first unsupervised RE model that does not need hyperparameter
tuning. Results on three general and specific domain datasets show that
PromptORE consistently outperforms state-of-the-art models with a relative gain
of more than 40% in B 3 , V-measure and ARI. Qualitative analysis also
indicates PromptORE's ability to identify semantically coherent clusters that
are very close to true relations.
Related papers
- AutoRE: Document-Level Relation Extraction with Large Language Models [27.426703757501507]
We introduce AutoRE, an end-to-end DocRE model that adopts a novel RE extraction paradigm named RHF (Relation-Head-Facts)
Unlike existing approaches, AutoRE does not rely on the assumption of known relation options, making it more reflective of real-world scenarios.
Our experiments on the RE-DocRED dataset showcase AutoRE's best performance, achieving state-of-the-art results.
arXiv Detail & Related papers (2024-03-21T23:48:21Z) - Silver Syntax Pre-training for Cross-Domain Relation Extraction [20.603482820770356]
Relation Extraction (RE) remains a challenging task, especially when considering realistic out-of-domain evaluations.
obtaining high-quality (manually annotated) data is extremely expensive and cannot realistically be repeated for each new domain.
An intermediate training step on data from related tasks has shown to be beneficial across many NLP tasks.However, this setup still requires supplementary annotated data, which is often not available.
In this paper, we investigate intermediate pre-training specifically for RE. We exploit the affinity between syntactic structure and semantic RE, and identify the syntactic relations closely related to RE by being on the shortest dependency path between two entities
arXiv Detail & Related papers (2023-05-18T14:49:19Z) - EDeR: A Dataset for Exploring Dependency Relations Between Events [12.215649447070664]
We introduce the human-annotated Event Dependency Relation dataset (EDeR)
We show that recognizing this relation leads to more accurate event extraction.
We demonstrate that predicting the three-way classification into the required argument, optional argument or non-argument is a more challenging task.
arXiv Detail & Related papers (2023-04-04T08:07:07Z) - Enriching Relation Extraction with OpenIE [70.52564277675056]
Relation extraction (RE) is a sub-discipline of information extraction (IE)
In this work, we explore how recent approaches for open information extraction (OpenIE) may help to improve the task of RE.
Our experiments over two annotated corpora, KnowledgeNet and FewRel, demonstrate the improved accuracy of our enriched models.
arXiv Detail & Related papers (2022-12-19T11:26:23Z) - Relation Extraction as Open-book Examination: Retrieval-enhanced Prompt
Tuning [109.7767515627765]
We propose a new semiparametric paradigm of retrieval-enhanced prompt tuning for relation extraction.
Our model infers relation through knowledge stored in the weights during training.
Our method can achieve state-of-the-art in both standard supervised and few-shot settings.
arXiv Detail & Related papers (2022-05-04T23:38:37Z) - Does Recommend-Revise Produce Reliable Annotations? An Analysis on
Missing Instances in DocRED [60.39125850987604]
We show that a textit-revise scheme results in false negative samples and an obvious bias towards popular entities and relations.
The relabeled dataset is released to serve as a more reliable test set of document RE models.
arXiv Detail & Related papers (2022-04-17T11:29:01Z) - RelationPrompt: Leveraging Prompts to Generate Synthetic Data for
Zero-Shot Relation Triplet Extraction [65.4337085607711]
We introduce the task setting of Zero-Shot Relation Triplet Extraction (ZeroRTE)
Given an input sentence, each extracted triplet consists of the head entity, relation label, and tail entity where the relation label is not seen at the training stage.
We propose to synthesize relation examples by prompting language models to generate structured texts.
arXiv Detail & Related papers (2022-03-17T05:55:14Z) - SAIS: Supervising and Augmenting Intermediate Steps for Document-Level
Relation Extraction [51.27558374091491]
We propose to explicitly teach the model to capture relevant contexts and entity types by supervising and augmenting intermediate steps (SAIS) for relation extraction.
Based on a broad spectrum of carefully designed tasks, our proposed SAIS method not only extracts relations of better quality due to more effective supervision, but also retrieves the corresponding supporting evidence more accurately.
arXiv Detail & Related papers (2021-09-24T17:37:35Z) - Relation of the Relations: A New Paradigm of the Relation Extraction
Problem [52.21210549224131]
We propose a new paradigm of Relation Extraction (RE) that considers as a whole the predictions of all relations in the same context.
We develop a data-driven approach that does not require hand-crafted rules but learns by itself the relation of relations (RoR) using Graph Neural Networks and a relation matrix transformer.
Experiments show that our model outperforms the state-of-the-art approaches by +1.12% on the ACE05 dataset and +2.55% on SemEval 2018 Task 7.2.
arXiv Detail & Related papers (2020-06-05T22:25:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.