Machine Learning Infused Distributed Optimization for Coordinating Virtual Power Plant Assets
- URL: http://arxiv.org/abs/2310.17882v2
- Date: Thu, 16 May 2024 15:43:30 GMT
- Title: Machine Learning Infused Distributed Optimization for Coordinating Virtual Power Plant Assets
- Authors: Meiyi Li, Javad Mohammadi,
- Abstract summary: This paper presents a novel machine learning-assisted distributed optimization to coordinate VPP assets.
Our method, named LOOP-MAC, adopts a multi-agent coordination perspective where each VPP agent manages multiple DERs.
Our results highlight the advantages of LOOP-MAC, showcasing accelerated solution times per iteration and significantly reduced convergence times.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Amid the increasing interest in the deployment of Distributed Energy Resources (DERs), the Virtual Power Plant (VPP) has emerged as a pivotal tool for aggregating diverse DERs and facilitating their participation in wholesale energy markets. These VPP deployments have been fueled by the Federal Energy Regulatory Commission's Order 2222, which makes DERs and VPPs competitive across market segments. However, the diversity and decentralized nature of DERs present significant challenges to the scalable coordination of VPP assets. To address efficiency and speed bottlenecks, this paper presents a novel machine learning-assisted distributed optimization to coordinate VPP assets. Our method, named LOOP-MAC(Learning to Optimize the Optimization Process for Multi-agent Coordination), adopts a multi-agent coordination perspective where each VPP agent manages multiple DERs and utilizes neural network approximators to expedite the solution search. The LOOP-MAC method employs a gauge map to guarantee strict compliance with local constraints, effectively reducing the need for additional post-processing steps. Our results highlight the advantages of LOOP-MAC, showcasing accelerated solution times per iteration and significantly reduced convergence times. The LOOP-MAC method outperforms conventional centralized and distributed optimization methods in optimization tasks that require repetitive and sequential execution.
Related papers
- Learning to Solve the Min-Max Mixed-Shelves Picker-Routing Problem via Hierarchical and Parallel Decoding [0.3867363075280544]
The Mixed-Shelves Picker Routing Problem (MSPRP) is a fundamental challenge in logistics, where pickers must navigate a mixed-shelves environment to retrieve SKUs efficiently.
We propose a novel hierarchical and parallel decoding approach for solving the min-max variant of the MSPRP via multi-agent reinforcement learning.
Experiments show state-of-the-art performance in both solution quality and inference speed, particularly for large-scale and out-of-distribution instances.
arXiv Detail & Related papers (2025-02-14T15:42:30Z) - Cluster-Based Multi-Agent Task Scheduling for Space-Air-Ground Integrated Networks [60.085771314013044]
Low-altitude economy holds significant potential for development in areas such as communication and sensing.
We propose a Clustering-based Multi-agent Deep Deterministic Policy Gradient (CMADDPG) algorithm to address the multi-UAV cooperative task scheduling challenges in SAGIN.
arXiv Detail & Related papers (2024-12-14T06:17:33Z) - Hierarchical Multi-Agent DRL Based Dynamic Cluster Reconfiguration for UAV Mobility Management [46.80160709931929]
Multi-connectivity involves dynamic cluster formation among distributed access points (APs) and coordinated resource allocation from these APs.
We propose a novel mobility management scheme for unmanned aerial vehicles (UAVs) that uses dynamic cluster reconfiguration with energy-efficient power allocation.
arXiv Detail & Related papers (2024-12-05T19:20:42Z) - Design Optimization of NOMA Aided Multi-STAR-RIS for Indoor Environments: A Convex Approximation Imitated Reinforcement Learning Approach [51.63921041249406]
Non-orthogonal multiple access (NOMA) enables multiple users to share the same frequency band, and simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS)
deploying STAR-RIS indoors presents challenges in interference mitigation, power consumption, and real-time configuration.
A novel network architecture utilizing multiple access points (APs), STAR-RISs, and NOMA is proposed for indoor communication.
arXiv Detail & Related papers (2024-06-19T07:17:04Z) - Federated Multi-Level Optimization over Decentralized Networks [55.776919718214224]
We study the problem of distributed multi-level optimization over a network, where agents can only communicate with their immediate neighbors.
We propose a novel gossip-based distributed multi-level optimization algorithm that enables networked agents to solve optimization problems at different levels in a single timescale.
Our algorithm achieves optimal sample complexity, scaling linearly with the network size, and demonstrates state-of-the-art performance on various applications.
arXiv Detail & Related papers (2023-10-10T00:21:10Z) - Multi-Microgrid Collaborative Optimization Scheduling Using an Improved
Multi-Agent Soft Actor-Critic Algorithm [8.461537684562776]
A multi-microgrid (MMG) system consists of multiple renewable energy microgrids belonging to different operating entities.
This paper proposes a MMG collaborative optimization scheduling model based on a multi-agent centralized training distributed execution framework.
arXiv Detail & Related papers (2023-04-01T22:44:52Z) - Distributed-Training-and-Execution Multi-Agent Reinforcement Learning
for Power Control in HetNet [48.96004919910818]
We propose a multi-agent deep reinforcement learning (MADRL) based power control scheme for the HetNet.
To promote cooperation among agents, we develop a penalty-based Q learning (PQL) algorithm for MADRL systems.
In this way, an agent's policy can be learned by other agents more easily, resulting in a more efficient collaboration process.
arXiv Detail & Related papers (2022-12-15T17:01:56Z) - Towards Global Optimality in Cooperative MARL with the Transformation
And Distillation Framework [26.612749327414335]
Decentralized execution is one core demand in cooperative multi-agent reinforcement learning (MARL)
In this paper, we theoretically analyze two common classes of algorithms with decentralized policies -- multi-agent policy gradient methods and value-decomposition methods.
We show that TAD-PPO can theoretically perform optimal policy learning in the finite multi-agent MDPs and shows significant outperformance on a large set of cooperative multi-agent tasks.
arXiv Detail & Related papers (2022-07-12T06:59:13Z) - Optimization for Master-UAV-powered Auxiliary-Aerial-IRS-assisted IoT
Networks: An Option-based Multi-agent Hierarchical Deep Reinforcement
Learning Approach [56.84948632954274]
This paper investigates a master unmanned aerial vehicle (MUAV)-powered Internet of Things (IoT) network.
We propose using a rechargeable auxiliary UAV (AUAV) equipped with an intelligent reflecting surface (IRS) to enhance the communication signals from the MUAV.
Under the proposed model, we investigate the optimal collaboration strategy of these energy-limited UAVs to maximize the accumulated throughput of the IoT network.
arXiv Detail & Related papers (2021-12-20T15:45:28Z) - Adaptive Stochastic ADMM for Decentralized Reinforcement Learning in
Edge Industrial IoT [106.83952081124195]
Reinforcement learning (RL) has been widely investigated and shown to be a promising solution for decision-making and optimal control processes.
We propose an adaptive ADMM (asI-ADMM) algorithm and apply it to decentralized RL with edge-computing-empowered IIoT networks.
Experiment results show that our proposed algorithms outperform the state of the art in terms of communication costs and scalability, and can well adapt to complex IoT environments.
arXiv Detail & Related papers (2021-06-30T16:49:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.