論文の概要: A Deep Multi-Modal Cyber-Attack Detection in Industrial Control Systems
- arxiv url: http://arxiv.org/abs/2304.01440v1
- Date: Tue, 4 Apr 2023 01:27:21 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-05 15:50:31.850897
- Title: A Deep Multi-Modal Cyber-Attack Detection in Industrial Control Systems
- Title(参考訳): 産業制御システムにおけるディープマルチモーダルサイバーアタック検出
- Authors: Sepideh Bahadoripour, Ethan MacDonald, Hadis Karimipour
- Abstract要約: 本研究は、ICSのネットワークとセンサのモダリティデータを、ICSの深層多モードサイバー攻撃検出モデルで処理する。
以上の結果から,提案モデルが既存の単一モダリティモデルや最近の文献よりも優れていることが示唆された。
- 参考スコア(独自算出の注目度): 1.0312968200748118
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The growing number of cyber-attacks against Industrial Control Systems (ICS)
in recent years has elevated security concerns due to the potential
catastrophic impact. Considering the complex nature of ICS, detecting a
cyber-attack in them is extremely challenging and requires advanced methods
that can harness multiple data modalities. This research utilizes network and
sensor modality data from ICS processed with a deep multi-modal cyber-attack
detection model for ICS. Results using the Secure Water Treatment (SWaT) system
show that the proposed model can outperform existing single modality models and
recent works in the literature by achieving 0.99 precision, 0.98 recall, and
0.98 f-measure, which shows the effectiveness of using both modalities in a
combined model for detecting cyber-attacks.
- Abstract(参考訳): 近年、産業制御システム(ICS)に対するサイバー攻撃の増加は、破滅的な影響の恐れから、セキュリティ上の懸念を高めている。
ICSの複雑な性質を考えると、サイバー攻撃を検出することは極めて困難であり、複数のデータモダリティを利用する高度な方法が必要である。
本研究は、ICSのネットワークとセンサのモダリティデータを、ICSの深層多モードサイバー攻撃検出モデルで処理する。
安全水処理 (swat) システムを用いた結果, 提案手法は, サイバー攻撃検出モデルと組み合わせたモデルにおいて, 両モダリティを併用することにより, 0.99 精度, 0.98 リコール, 0.98 f-measure を達成することにより, 既存の単一モダリティモデルや最近の文献に勝ることがわかった。
関連論文リスト
- Enhanced Hybrid Deep Learning Approach for Botnet Attacks Detection in IoT Environment [0.5384718724090648]
BotnetはIoTデバイスやシステムに対する信頼の喪失を攻撃し、セキュリティ、信頼性、整合性への信頼を損なう。
ディープラーニング技術は、データの複雑なパターンを分析して学習する能力により、ボットネット攻撃の検出を大幅に強化した。
本研究では、ボットネット攻撃検出のためのディープ畳み込みニューラルネットワーク、Bi-Directional Long Short-Term Memory(Bi-LSTM)、Bi-Directional Gated Recurrent Unit(Bi-GRU)、Recurrent Neural Networks(RNN)の積み重ねを提案した。
論文 参考訳(メタデータ) (2025-02-10T03:59:27Z) - MDHP-Net: Detecting Injection Attacks on In-vehicle Network using Multi-Dimensional Hawkes Process and Temporal Model [44.356505647053716]
本稿では、インジェクションアタックとして知られる特定のタイプのサイバーアタックについて考察する。
これらのインジェクション攻撃は時間の経過とともに効果があり、徐々にネットワークトラフィックを操作し、車両の正常な機能を破壊している。
本稿では,MDHP-LSTMブロックに最適なMDHPパラメータを組み込んだインジェクション攻撃検出器MDHP-Netを提案する。
論文 参考訳(メタデータ) (2024-11-15T15:05:01Z) - Enhanced Anomaly Detection in Industrial Control Systems aided by Machine Learning [2.2457306746668766]
本研究は,ICS環境におけるネットワークデータとプロセスデータの組み合わせによる攻撃検出の改善について検討する。
この結果から,ネットワークトラフィックと運用プロセスデータの統合により,検出能力が向上することが示唆された。
結果は有望だが、彼らは予備的であり、さらなる研究の必要性を強調している。
論文 参考訳(メタデータ) (2024-10-25T17:41:33Z) - Countering Autonomous Cyber Threats [40.00865970939829]
ファンデーションモデルは、サイバードメイン内で広く、特に二元的関心事を提示します。
近年の研究では、これらの先進的なモデルが攻撃的なサイバースペース操作を通知または独立に実行する可能性を示している。
この研究は、孤立したネットワークでマシンを妥協する能力について、最先端のいくつかのFMを評価し、そのようなAIによる攻撃を倒す防御メカニズムを調査する。
論文 参考訳(メタデータ) (2024-10-23T22:46:44Z) - Redefining DDoS Attack Detection Using A Dual-Space Prototypical Network-Based Approach [38.38311259444761]
我々は、DDoS攻撃を検出するための新しいディープラーニングベースの技術を導入する。
本稿では,一意な双対空間損失関数を利用する新しい双対空間原型ネットワークを提案する。
このアプローチは、潜在空間における表現学習の強みを生かしている。
論文 参考訳(メタデータ) (2024-06-04T03:22:52Z) - MEAOD: Model Extraction Attack against Object Detectors [45.817537875368956]
モデル抽出攻撃は、攻撃者が被害者モデルに匹敵する機能を持つ代替モデルを複製することを可能にする。
本稿では,オブジェクト検出モデルに対するMEAODと呼ばれる効果的な攻撃手法を提案する。
10kのクエリ予算の所定の条件下で,抽出性能を70%以上達成する。
論文 参考訳(メタデータ) (2023-12-22T13:28:50Z) - An Approach to Abstract Multi-stage Cyberattack Data Generation for ML-Based IDS in Smart Grids [2.5655761752240505]
スマートグリッドにおける機械学習モデルを学習するためのグラフベースアプローチを用いて合成データを生成する手法を提案する。
我々は、グラフ定式化によって定義された多段階サイバー攻撃の抽象形式を使用し、ネットワーク内の攻撃の伝播挙動をシミュレートする。
論文 参考訳(メタデータ) (2023-12-21T11:07:51Z) - A Variational Autoencoder Framework for Robust, Physics-Informed
Cyberattack Recognition in Industrial Cyber-Physical Systems [2.051548207330147]
我々は、産業制御システムに対する秘密攻撃と呼ばれるサイバー攻撃を検出し、診断し、ローカライズするために使用できるデータ駆動フレームワークを開発する。
このフレームワークは、可変オートエンコーダ(VAE)、リカレントニューラルネットワーク(RNN)、ディープニューラルネットワーク(DNN)を組み合わせたハイブリッド設計である。
論文 参考訳(メタデータ) (2023-10-10T19:07:53Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
本稿では、異なる安全でない入力に対してモデルを強化するために、カバレッジパラダイムに基づく軽量な監視アーキテクチャを提案する。
実験結果から,提案手法は強力な対向例とアウト・オブ・ディストリビューション・インプットの両方を検出するのに有効であることが示唆された。
論文 参考訳(メタデータ) (2021-01-28T16:38:26Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
武器の脅威検出とライブビデオからの攻撃的な行動は、潜在的に致命的な事故の迅速検出と予防に使用できる。
これを実現する一つの方法は、人工知能と、特に画像分析のための機械学習を使用することです。
従来のモノリシックなエンド・ツー・エンドのディープラーニングモデルと、セマンティクスセグメンテーションによって火花を検知する単純なニューラルネットワークのアンサンブルに基づく前述したモデルを比較した。
論文 参考訳(メタデータ) (2020-12-17T15:19:29Z) - Deep Learning based Covert Attack Identification for Industrial Control
Systems [5.299113288020827]
我々は、スマートグリッドに対する秘密攻撃と呼ばれるサイバー攻撃を検出し、診断し、ローカライズするために使用できるデータ駆動フレームワークを開発した。
このフレームワークは、オートエンコーダ、リカレントニューラルネットワーク(RNN)とLong-Short-Term-Memory層、Deep Neural Network(DNN)を組み合わせたハイブリッド設計である。
論文 参考訳(メタデータ) (2020-09-25T17:48:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。