HALO: Hazard-Aware Landing Optimization for Autonomous Systems
- URL: http://arxiv.org/abs/2304.01583v1
- Date: Tue, 4 Apr 2023 07:20:06 GMT
- Title: HALO: Hazard-Aware Landing Optimization for Autonomous Systems
- Authors: Christopher R. Hayner, Samuel C. Buckner, Daniel Broyles, Evelyn
Madewell, Karen Leung and Behcet Acikmese
- Abstract summary: This paper presents a coupled perception-planning solution which addresses the hazard detection, optimal landing trajectory generation, and contingency planning challenges.
We develop and combine two novel algorithms, Hazard-Aware Landing Site Selection (HALSS) and Adaptive Deferred-Decision Trajectory Optimization (-DDTO), to address the perception and planning challenges.
We demonstrate the efficacy of our approach using a simulated Martian environment and show that our coupled perception-planning method achieves greater landing success.
- Score: 1.5414037351414311
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With autonomous aerial vehicles enacting safety-critical missions, such as
the Mars Science Laboratory Curiosity rover's landing on Mars, the tasks of
automatically identifying and reasoning about potentially hazardous landing
sites is paramount. This paper presents a coupled perception-planning solution
which addresses the hazard detection, optimal landing trajectory generation,
and contingency planning challenges encountered when landing in uncertain
environments. Specifically, we develop and combine two novel algorithms,
Hazard-Aware Landing Site Selection (HALSS) and Adaptive Deferred-Decision
Trajectory Optimization (Adaptive-DDTO), to address the perception and planning
challenges, respectively. The HALSS framework processes point cloud information
to identify feasible safe landing zones, while Adaptive-DDTO is a multi-target
contingency planner that adaptively replans as new perception information is
received. We demonstrate the efficacy of our approach using a simulated Martian
environment and show that our coupled perception-planning method achieves
greater landing success whilst being more fuel efficient compared to a
nonadaptive DDTO approach.
Related papers
- Low-altitude Friendly-Jamming for Satellite-Maritime Communications via Generative AI-enabled Deep Reinforcement Learning [72.72954660774002]
Low Earth Orbit (LEO) satellites can be used to assist maritime wireless communications for data transmission across wide-ranging areas.
Extensive coverage of LEO satellites, combined with openness of channels, can cause the communication process to suffer from security risks.
This paper presents a low-altitude friendly-jamming LEO satellite-maritime communication system enabled by a unmanned aerial vehicle.
arXiv Detail & Related papers (2025-01-26T10:13:51Z) - Enhanced Safety in Autonomous Driving: Integrating Latent State Diffusion Model for End-to-End Navigation [5.928213664340974]
This research addresses the safety issue in the control optimization problem of autonomous driving.
We propose a novel, model-based approach for policy optimization, utilizing a conditional Value-at-Risk based Soft Actor Critic.
Our method introduces a worst-case actor to guide safe exploration, ensuring rigorous adherence to safety requirements even in unpredictable scenarios.
arXiv Detail & Related papers (2024-07-08T18:32:40Z) - Visual Environment Assessment for Safe Autonomous Quadrotor Landing [8.538463567092297]
We present a novel approach for detection and assessment of potential landing sites for safe quadrotor landing.
Our solution efficiently integrates 2D and 3D environmental information, eliminating the need for external aids such as GPS.
Our approach runs in real-time on quadrotors equipped with limited computational capabilities.
arXiv Detail & Related papers (2023-11-16T18:02:10Z) - Spacecraft Autonomous Decision-Planning for Collision Avoidance: a
Reinforcement Learning Approach [0.0]
This work proposes an implementation of autonomous CA decision-making capabilities on spacecraft based on Reinforcement Learning techniques.
The proposed framework considers imperfect monitoring information about the status of the debris in orbit and allows the AI system to effectively learn policies to perform accurate Collision Avoidance Maneuvers (CAMs)
The objective is to successfully delegate the decision-making process for autonomously implementing a CAM to the spacecraft without human intervention.
arXiv Detail & Related papers (2023-10-29T10:15:33Z) - Meta-Learning Priors for Safe Bayesian Optimization [72.8349503901712]
We build on a meta-learning algorithm, F-PACOH, capable of providing reliable uncertainty quantification in settings of data scarcity.
As core contribution, we develop a novel framework for choosing safety-compliant priors in a data-riven manner.
On benchmark functions and a high-precision motion system, we demonstrate that our meta-learned priors accelerate the convergence of safe BO approaches.
arXiv Detail & Related papers (2022-10-03T08:38:38Z) - Generating Useful Accident-Prone Driving Scenarios via a Learned Traffic
Prior [135.78858513845233]
STRIVE is a method to automatically generate challenging scenarios that cause a given planner to produce undesirable behavior, like collisions.
To maintain scenario plausibility, the key idea is to leverage a learned model of traffic motion in the form of a graph-based conditional VAE.
A subsequent optimization is used to find a "solution" to the scenario, ensuring it is useful to improve the given planner.
arXiv Detail & Related papers (2021-12-09T18:03:27Z) - Deep Reinforcement Learning for Safe Landing Site Selection with
Concurrent Consideration of Divert Maneuvers [0.0]
This research proposes a new integrated framework for identifying safe landing locations and planning in-flight divert maneuvers.
The proposed framework was able to achieve 94.8 $%$ of successful landing in highly challenging landing sites.
arXiv Detail & Related papers (2021-02-24T17:53:10Z) - Reinforcement Learning for Low-Thrust Trajectory Design of
Interplanetary Missions [77.34726150561087]
This paper investigates the use of reinforcement learning for the robust design of interplanetary trajectories in presence of severe disturbances.
An open-source implementation of the state-of-the-art algorithm Proximal Policy Optimization is adopted.
The resulting Guidance and Control Network provides both a robust nominal trajectory and the associated closed-loop guidance law.
arXiv Detail & Related papers (2020-08-19T15:22:15Z) - Chance-Constrained Trajectory Optimization for Safe Exploration and
Learning of Nonlinear Systems [81.7983463275447]
Learning-based control algorithms require data collection with abundant supervision for training.
We present a new approach for optimal motion planning with safe exploration that integrates chance-constrained optimal control with dynamics learning and feedback control.
arXiv Detail & Related papers (2020-05-09T05:57:43Z) - Online Mapping and Motion Planning under Uncertainty for Safe Navigation
in Unknown Environments [3.2296078260106174]
This manuscript proposes an uncertainty-based framework for mapping and planning feasible motions online with probabilistic safety-guarantees.
The proposed approach deals with the motion, probabilistic safety, and online computation constraints by: (i) mapping the surroundings to build an uncertainty-aware representation of the environment, and (ii) iteratively (re)planning to goal that are kinodynamically feasible and probabilistically safe through a multi-layered sampling-based planner in the belief space.
arXiv Detail & Related papers (2020-04-26T08:53:37Z) - Data Freshness and Energy-Efficient UAV Navigation Optimization: A Deep
Reinforcement Learning Approach [88.45509934702913]
We design a navigation policy for multiple unmanned aerial vehicles (UAVs) where mobile base stations (BSs) are deployed.
We incorporate different contextual information such as energy and age of information (AoI) constraints to ensure the data freshness at the ground BS.
By applying the proposed trained model, an effective real-time trajectory policy for the UAV-BSs captures the observable network states over time.
arXiv Detail & Related papers (2020-02-21T07:29:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.