Quantum quenches in driven-dissipative quadratic fermionic systems with
parity-time symmetry
- URL: http://arxiv.org/abs/2304.01836v2
- Date: Mon, 19 Feb 2024 09:20:40 GMT
- Title: Quantum quenches in driven-dissipative quadratic fermionic systems with
parity-time symmetry
- Authors: Elias Starchl and Lukas M. Sieberer
- Abstract summary: We study the quench dynamics of noninteracting fermionic quantum many-body systems that are subjected to Markovian drive and dissipation.
We show that transitions between dynamical pumping phases give rise to a new type of dynamical critical behavior of the rates of directional pumping.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the quench dynamics of noninteracting fermionic quantum many-body
systems that are subjected to Markovian drive and dissipation and are described
by a quadratic Liouvillian which has parity-time (PT) symmetry. In recent work,
we have shown that such systems relax locally to a maximum entropy ensemble
that we have dubbed the PT-symmetric generalized Gibbs ensemble (PTGGE), in
analogy to the generalized Gibbs ensemble that describes the steady state of
isolated integrable quantum many-body systems after a quench. Here, using
driven-dissipative versions of the Su-Schrieffer-Heeger (SSH) model and the
Kitaev chain as paradigmatic model systems, we corroborate and substantially
expand upon our previous results. In particular, we confirm the validity of a
dissipative quasiparticle picture at finite dissipation by demonstrating light
cone spreading of correlations and the linear growth and saturation to the
PTGGE prediction of the quasiparticle-pair contribution to the subsystem
entropy in the PT-symmetric phase. Further, we introduce the concept of
directional pumping phases, which is related to the non-Hermitian topology of
the Liouvillian and based upon qualitatively different dynamics of the dual
string order parameter and the subsystem fermion parity in the SSH model and
the Kitaev chain, respectively: Depending on the postquench parameters, there
can be pumping of string order and fermion parity through both ends of a
subsystem corresponding to a finite segment of the one-dimensional lattice,
through only one end, or there can be no pumping at all. We show that
transitions between dynamical pumping phases give rise to a new and independent
type of dynamical critical behavior of the rates of directional pumping, which
are determined by the soft modes of the PTGGE.
Related papers
- Theory of free fermions dynamics under partial post-selected monitoring [49.1574468325115]
We derive a partial post-selected Schrdinger"o equation based on a microscopic description of continuous weak measurement.
We show that the passage to the monitored universality occurs abruptly at finite partial post-selection.
Our approach establishes a way to study MiPTs for arbitrary subsets of quantum trajectories.
arXiv Detail & Related papers (2023-12-21T16:53:42Z) - Entanglement phase transition due to reciprocity breaking without
measurement or post-selection [59.63862802533879]
EPT occurs for a system undergoing purely unitary evolution.
We analytically derive the entanglement entropy out of and at the critical point for the $l=1$ and $l/N ll 1$ case.
arXiv Detail & Related papers (2023-08-28T14:28:59Z) - Subradiant edge states in an atom chain with waveguide-mediated hopping [0.0]
We analyze a system formed by two chains of identical emitters coupled to a waveguide, whose guided modes induce excitation hopping.
We find that, in the single excitation limit, the bulk topological properties of the Hamiltonian that describes the coherent dynamics of the system are identical to the ones of a one-dimensional Su-Schrieffer-Heeger model.
We analytically identify parameter regimes where edge states arise which are fully localized to the boundaries of the chain, independently of the system size.
arXiv Detail & Related papers (2022-05-27T09:35:49Z) - Relaxation to a Parity-Time Symmetric Generalized Gibbs Ensemble after a
Quantum Quench in a Driven-Dissipative Kitaev Chain [0.0]
We show that relaxation of driven-dissipative systems after a quantum quench can be determined by a maximum entropy ensemble.
We show that these results apply to broad classes of noninteracting fermionic models.
arXiv Detail & Related papers (2022-03-28T08:59:58Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Topological transitions with continuously monitored free fermions [68.8204255655161]
We show the presence of a topological phase transition that is of a different universality class than that observed in stroboscopic projective circuits.
We find that this entanglement transition is well identified by a combination of the bipartite entanglement entropy and the topological entanglement entropy.
arXiv Detail & Related papers (2021-12-17T22:01:54Z) - Rapid thermalization of spin chain commuting Hamiltonians [13.349045680843885]
We prove that spin chains weakly coupled to a large heat bath thermalize rapidly at any temperature for finite-range, translation-invariant commuting Hamiltonians.
This has wide-ranging applications to the study of many-body in and out-of-equilibrium quantum systems.
arXiv Detail & Related papers (2021-12-01T16:08:10Z) - Quantum critical systems with dissipative boundaries [0.0]
We study the effects of dissipative boundaries in many-body systems at continuous quantum transitions.
As paradigmatic models, we consider fermionic wires subject to dissipative interactions at the boundaries.
arXiv Detail & Related papers (2021-06-04T15:08:06Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Classical critical dynamics in quadratically driven Kerr resonators [0.0]
Driven-dissipative kerr lattices with two-photon driving are experimentally relevant systems.
We show that the Liouvillian gap scales with the same exponent, similar to scaling of the Hamiltonian gap at quantum phase transitions in closed systems.
arXiv Detail & Related papers (2020-02-14T18:48:05Z) - From stochastic spin chains to quantum Kardar-Parisi-Zhang dynamics [68.8204255655161]
We introduce the asymmetric extension of the Quantum Symmetric Simple Exclusion Process.
We show that the time-integrated current of fermions defines a height field which exhibits a quantum non-linear dynamics.
arXiv Detail & Related papers (2020-01-13T14:30:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.