論文の概要: TransPimLib: A Library for Efficient Transcendental Functions on
Processing-in-Memory Systems
- arxiv url: http://arxiv.org/abs/2304.01951v4
- Date: Fri, 19 May 2023 15:16:57 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-22 18:34:40.884087
- Title: TransPimLib: A Library for Efficient Transcendental Functions on
Processing-in-Memory Systems
- Title(参考訳): TransPimLib: メモリ内処理システムにおける効率的な超越関数ライブラリ
- Authors: Maurus Item, Juan G\'omez-Luna, Yuxin Guo, Geraldo F. Oliveira,
Mohammad Sadrosadati, Onur Mutlu
- Abstract要約: 三角関数,双曲関数,指数,対数,平方根などに対する CORDIC および LUT に基づく手法を提供するライブラリである emphTransPimLib について述べる。
UPMEM PIMアーキテクチャのためのTransPimLibの実装を開発し、性能と精度の観点からTransPimLibの手法を徹底的に評価する。
- 参考スコア(独自算出の注目度): 9.63697732065181
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Processing-in-memory (PIM) promises to alleviate the data movement bottleneck
in modern computing systems. However, current real-world PIM systems have the
inherent disadvantage that their hardware is more constrained than in
conventional processors (CPU, GPU), due to the difficulty and cost of building
processing elements near or inside the memory. As a result, general-purpose PIM
architectures support fairly limited instruction sets and struggle to execute
complex operations such as transcendental functions and other hard-to-calculate
operations (e.g., square root). These operations are particularly important for
some modern workloads, e.g., activation functions in machine learning
applications.
In order to provide support for transcendental (and other hard-to-calculate)
functions in general-purpose PIM systems, we present \emph{TransPimLib}, a
library that provides CORDIC-based and LUT-based methods for trigonometric
functions, hyperbolic functions, exponentiation, logarithm, square root, etc.
We develop an implementation of TransPimLib for the UPMEM PIM architecture and
perform a thorough evaluation of TransPimLib's methods in terms of performance
and accuracy, using microbenchmarks and three full workloads (Blackscholes,
Sigmoid, Softmax). We open-source all our code and datasets
at~\url{https://github.com/CMU-SAFARI/transpimlib}.
- Abstract(参考訳): プロセッシング・イン・メモリ(PIM)は、現代のコンピューティングシステムにおけるデータ移動のボトルネックを軽減することを約束する。
しかし、現在の実世界のpimシステムは、メモリの近くで処理要素を構築するのが困難でコストがかかるため、ハードウェアが従来のプロセッサ(cpu、gpu)よりも制約が強いという固有の欠点がある。
その結果、汎用PIMアーキテクチャは、かなり限られた命令セットをサポートし、超越関数などの複雑な操作(例えば平方根)を実行するのに苦労する。
これらの操作は、機械学習アプリケーションにおけるアクティベーション機能など、現代のワークロードにおいて特に重要である。
汎用PIMシステムにおける超越関数(およびその他のハード・トゥ・カルキュレート関数)のサポートを提供するため,CORDICに基づく三角関数,双曲関数,指数関数,対数,平方根などのためのライブラリである \emph{TransPimLib} を提案する。
UPMEM PIMアーキテクチャのためのTransPimLibの実装を開発し、マイクロベンチマークと3つのフルワークロード(Blackscholes, Sigmoid, Softmax)を用いて、TransPimLibの手法を性能と精度で徹底的に評価する。
私たちは、すべてのコードとデータセットを、~\url{https://github.com/CMU-SAFARI/transpimlib}でオープンソースにしています。
関連論文リスト
- DeeR-VLA: Dynamic Inference of Multimodal Large Language Models for Efficient Robot Execution [114.61347672265076]
実世界のロボットのためのMLLMの開発は、ロボットプラットフォームで利用可能な計算能力とメモリ容量が典型的に限られているため、難しい。
活性化MLLMのサイズを自動的に調整するロボットビジョンランゲージ・アクション・モデル(DeeR)の動的早期実行フレームワークを提案する。
DeeR は LLM の計算コストを 5.2-6.5x に削減し、GPU のメモリを 2-6x に削減した。
論文 参考訳(メタデータ) (2024-11-04T18:26:08Z) - PIM-Opt: Demystifying Distributed Optimization Algorithms on a Real-World Processing-In-Memory System [21.09681871279162]
大規模データセットに対するモダン機械学習(ML)トレーニングは、時間を要する作業量である。
最適化アルゴリズムであるGradient Descent (SGD) は、その効率性、単純さ、一般化性能に頼っている。
プロセッサ中心のアーキテクチャは、MLトレーニングワークロードの実行中に低パフォーマンスと高エネルギー消費に悩まされる。
Processing-In-Memory(PIM)は、データ移動のボトルネックを軽減するための有望なソリューションである。
論文 参考訳(メタデータ) (2024-04-10T17:00:04Z) - Dataflow-Aware PIM-Enabled Manycore Architecture for Deep Learning Workloads [16.67441258454545]
PIM(Processing-in-Memory)は、ディープラーニング(DL)ワークロードのエネルギー効率と高性能アクセラレーションの実現手段として登場した。
抵抗型ランダムアクセスメモリ(ReRAM)は、PIMを実装する上で最も有望な技術の一つである。
既存のPIMベースのアーキテクチャは、主に通信の役割を無視しながら計算に焦点を当てている。
論文 参考訳(メタデータ) (2024-03-28T00:29:15Z) - In Situ Framework for Coupling Simulation and Machine Learning with
Application to CFD [51.04126395480625]
近年、流体力学計算を容易にする機械学習(ML)の多くの成功例が報告されている。
シミュレーションが大きくなるにつれて、従来のオフライン学習のための新しいトレーニングデータセットの生成は、I/Oとストレージのボトルネックを生み出します。
この作業は、この結合を単純化し、異種クラスタでのその場トレーニングと推論を可能にするソリューションを提供する。
論文 参考訳(メタデータ) (2023-06-22T14:07:54Z) - Constant Memory Attention Block [74.38724530521277]
Constant Memory Attention Block (CMAB) は、新しい汎用アテンションブロックであり、その出力を一定メモリで計算し、一定計算で更新を実行する。
提案手法は,メモリ効率を著しく向上しつつ,最先端技術と競合する結果が得られることを示す。
論文 参考訳(メタデータ) (2023-06-21T22:41:58Z) - Harnessing Deep Learning and HPC Kernels via High-Level Loop and Tensor Abstractions on CPU Architectures [67.47328776279204]
この研究は、効率的でポータブルなDeep LearningとHigh Performance Computingカーネルを開発するためのフレームワークを導入している。
1)プロセッシングプリミティブ(TPP)を用いた計算コアの表現と,2)高レベルな宣言的手法でTPPのまわりの論理ループの表現の2つのステップでカーネルの開発を分解する。
我々は、スタンドアロンカーネルと、さまざまなCPUプラットフォームにおける最先端実装よりも優れたエンドツーエンドワークロードを使用して、このアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2023-04-25T05:04:44Z) - An Experimental Evaluation of Machine Learning Training on a Real
Processing-in-Memory System [9.429605859159023]
機械学習(ML)アルゴリズムのトレーニングは、計算集約的なプロセスであり、しばしばメモリバウンドである。
メモリ内の処理能力を備えたメモリ中心のコンピューティングシステムは、このデータ移動ボトルネックを軽減することができる。
実世界の汎用PIMアーキテクチャ上で,いくつかの代表的古典的MLアルゴリズムを実装した。
論文 参考訳(メタデータ) (2022-07-16T09:39:53Z) - Machine Learning Training on a Real Processing-in-Memory System [9.286176889576996]
機械学習アルゴリズムのトレーニングは計算集約的なプロセスであり、しばしばメモリバウンドである。
メモリ内処理機能を備えたメモリ中心のコンピューティングシステムは、このデータ移動ボトルネックを軽減することができる。
我々の研究は、現実世界の汎用PIMアーキテクチャ上で機械学習アルゴリズムのトレーニングを評価する最初のものである。
論文 参考訳(メタデータ) (2022-06-13T10:20:23Z) - Walle: An End-to-End, General-Purpose, and Large-Scale Production System
for Device-Cloud Collaborative Machine Learning [40.09527159285327]
We build the first end-to-end and general-purpose system, called Walle, for device-cloud collaborative machine learning (ML)
Walleはデプロイメントプラットフォームで構成され、MLタスクを10億規模のデバイスに分散する。データパイプラインはタスク入力を効率的に準備し、計算コンテナはクロスプラットフォームで高性能な実行環境を提供する。
我々はWalleを実践的なeコマースアプリケーションシナリオで評価し、その有効性、効率、スケーラビリティを実証する。
論文 参考訳(メタデータ) (2022-05-30T03:43:35Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
本稿では,基本的なクロスプラットフォームテンソルフレームワークとスクリプト言語エンジンを使用しながら,すべての要件をサポートする統合デプロイメントパイプラインとフリー・ツー・オペレートアプローチを提案する。
しかし、このアプローチは、実際のプロダクショングレードシステムに機械学習機能を実際にデプロイするために必要な手順やパイプラインを提供していない。
論文 参考訳(メタデータ) (2021-12-22T14:45:37Z) - DFTpy: An efficient and object-oriented platform for orbital-free DFT
simulations [55.41644538483948]
本稿では、Python 3で完全に書かれたOFDFTを実装したオープンソースソフトウェアであるDFTpyを紹介する。
本稿では,1CPUで計算したアルミニウムの100万原子系の電子構造について紹介する。
DFTpyはMITライセンスでリリースされている。
論文 参考訳(メタデータ) (2020-02-07T19:07:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。