GlueStick: Robust Image Matching by Sticking Points and Lines Together
- URL: http://arxiv.org/abs/2304.02008v3
- Date: Fri, 20 Oct 2023 14:27:45 GMT
- Title: GlueStick: Robust Image Matching by Sticking Points and Lines Together
- Authors: R\'emi Pautrat, Iago Su\'arez, Yifan Yu, Marc Pollefeys, Viktor
Larsson
- Abstract summary: This paper introduces a new matching paradigm, where points, lines and descriptors are unified into a single wireframe structure.
We show that our strategy outperforms that of other matching approaches independently.
- Score: 64.18659491529382
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Line segments are powerful features complementary to points. They offer
structural cues, robust to drastic viewpoint and illumination changes, and can
be present even in texture-less areas. However, describing and matching them is
more challenging compared to points due to partial occlusions, lack of texture,
or repetitiveness. This paper introduces a new matching paradigm, where points,
lines, and their descriptors are unified into a single wireframe structure. We
propose GlueStick, a deep matching Graph Neural Network (GNN) that takes two
wireframes from different images and leverages the connectivity information
between nodes to better glue them together. In addition to the increased
efficiency brought by the joint matching, we also demonstrate a large boost of
performance when leveraging the complementary nature of these two features in a
single architecture. We show that our matching strategy outperforms the
state-of-the-art approaches independently matching line segments and points for
a wide variety of datasets and tasks. The code is available at
https://github.com/cvg/GlueStick.
Related papers
- Contrastive Learning for Non-Local Graphs with Multi-Resolution
Structural Views [1.4445779250002606]
We propose a novel multiview contrastive learning approach that integrates diffusion filters on graphs.
By incorporating multiple graph views as augmentations, our method captures the structural equivalence in heterophilic graphs.
arXiv Detail & Related papers (2023-08-19T17:42:02Z) - FMGNN: Fused Manifold Graph Neural Network [102.61136611255593]
Graph representation learning has been widely studied and demonstrated effectiveness in various graph tasks.
We propose the Fused Manifold Graph Neural Network (NN), a novel GNN architecture that embeds graphs into different Manifolds during training.
Our experiments demonstrate that NN yields superior performance over strong baselines on the benchmarks of node classification and link prediction tasks.
arXiv Detail & Related papers (2023-04-03T15:38:53Z) - Robust Attributed Graph Alignment via Joint Structure Learning and
Optimal Transport [26.58964162799207]
We propose SLOTAlign, an unsupervised graph alignment framework that jointly performs Structure Learning and Optimal Transport Alignment.
We incorporate multi-view structure learning to enhance graph representation power and reduce the effect of structure and feature inconsistency inherited across graphs.
The proposed SLOTAlign shows superior performance and strongest robustness over seven unsupervised graph alignment methods and five specialized KG alignment methods.
arXiv Detail & Related papers (2023-01-30T08:41:36Z) - PA-GM: Position-Aware Learning of Embedding Networks for Deep Graph
Matching [14.713628231555223]
We introduce a novel end-to-end neural network that can map the linear assignment problem into a high-dimensional space.
Our model constructs the anchor set for the relative position of nodes.
It then aggregates the feature information of the target node and each anchor node based on a measure of relative position.
arXiv Detail & Related papers (2023-01-05T06:54:21Z) - A Robust Stacking Framework for Training Deep Graph Models with
Multifaceted Node Features [61.92791503017341]
Graph Neural Networks (GNNs) with numerical node features and graph structure as inputs have demonstrated superior performance on various supervised learning tasks with graph data.
The best models for such data types in most standard supervised learning settings with IID (non-graph) data are not easily incorporated into a GNN.
Here we propose a robust stacking framework that fuses graph-aware propagation with arbitrary models intended for IID data.
arXiv Detail & Related papers (2022-06-16T22:46:33Z) - SOLD2: Self-supervised Occlusion-aware Line Description and Detection [95.8719432775724]
We introduce the first joint detection and description of line segments in a single deep network.
Our method does not require any annotated line labels and can therefore generalize to any dataset.
We evaluate our approach against previous line detection and description methods on several multi-view datasets.
arXiv Detail & Related papers (2021-04-07T19:27:17Z) - Sequential Graph Convolutional Network for Active Learning [53.99104862192055]
We propose a novel pool-based Active Learning framework constructed on a sequential Graph Convolution Network (GCN)
With a small number of randomly sampled images as seed labelled examples, we learn the parameters of the graph to distinguish labelled vs unlabelled nodes.
We exploit these characteristics of GCN to select the unlabelled examples which are sufficiently different from labelled ones.
arXiv Detail & Related papers (2020-06-18T00:55:10Z) - Graph Representation Learning Network via Adaptive Sampling [4.996520403438455]
Graph Attention Network (GAT) and GraphSAGE are neural network architectures that operate on graph-structured data.
One challenge raised by GraphSAGE is how to smartly combine neighbour features based on graph structure.
We propose a new architecture to address these issues that is more efficient and is capable of incorporating different edge type information.
arXiv Detail & Related papers (2020-06-08T14:36:20Z) - Graph Neural Networks with Composite Kernels [60.81504431653264]
We re-interpret node aggregation from the perspective of kernel weighting.
We present a framework to consider feature similarity in an aggregation scheme.
We propose feature aggregation as the composition of the original neighbor-based kernel and a learnable kernel to encode feature similarities in a feature space.
arXiv Detail & Related papers (2020-05-16T04:44:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.