論文の概要: Multi-Class Unlearning for Image Classification via Weight Filtering
- arxiv url: http://arxiv.org/abs/2304.02049v2
- Date: Sat, 8 Jun 2024 10:56:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-12 05:58:24.462698
- Title: Multi-Class Unlearning for Image Classification via Weight Filtering
- Title(参考訳): 重みフィルタリングによる画像分類のためのマルチクラスアンラーニング
- Authors: Samuele Poppi, Sara Sarto, Marcella Cornia, Lorenzo Baraldi, Rita Cucchiara,
- Abstract要約: Machine Unlearningは、ネットワークからトレーニングデータポイントの影響を選択的に除去するための新興パラダイムである。
メモリ行列を用いてネットワークのコンポーネントを調整し、トレーニング後の任意のクラスに対して選択的な未学習動作を示す。
コンボリューションとトランスフォーマーベースのバックボーンを用いた,小規模・中規模の画像分類データセット上で,提案手法を検証した。
- 参考スコア(独自算出の注目度): 44.707144011189335
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine Unlearning is an emerging paradigm for selectively removing the impact of training datapoints from a network. Unlike existing methods that target a limited subset or a single class, our framework unlearns all classes in a single round. We achieve this by modulating the network's components using memory matrices, enabling the network to demonstrate selective unlearning behavior for any class after training. By discovering weights that are specific to each class, our approach also recovers a representation of the classes which is explainable by design. We test the proposed framework on small- and medium-scale image classification datasets, with both convolution- and Transformer-based backbones, showcasing the potential for explainable solutions through unlearning.
- Abstract(参考訳): Machine Unlearningは、ネットワークからトレーニングデータポイントの影響を選択的に除去するための新興パラダイムである。
限定されたサブセットや単一のクラスをターゲットにしている既存のメソッドとは異なり、私たちのフレームワークは、すべてのクラスを単一のラウンドで解放します。
メモリ行列を用いてネットワークのコンポーネントを調整し、トレーニング後の任意のクラスに対して選択的な未学習動作を示す。
それぞれのクラスに固有の重みを見つけることで、設計によって説明可能なクラスの表現を復元する。
コンボリューションベースとトランスフォーマーベースの両方のバックボーンを用いた,小規模・中規模の画像分類データセット上で提案手法を検証し,アンラーニングによる説明可能なソリューションの可能性を示した。
関連論文リスト
- Knowledge Adaptation Network for Few-Shot Class-Incremental Learning [23.90555521006653]
クラス増分学習(class-incremental learning)は、いくつかのサンプルを使用して、新しいクラスを段階的に認識することを目的としている。
この問題を解決する効果的な方法の1つは、原型進化分類器を構築することである。
新しいクラスの表現は弱で偏りがあるので、そのような戦略は準最適であると主張する。
論文 参考訳(メタデータ) (2024-09-18T07:51:38Z) - Experience feedback using Representation Learning for Few-Shot Object
Detection on Aerial Images [2.8560476609689185]
大規模なリモートセンシング画像データセットであるDOTAを用いて,本手法の性能評価を行った。
特に、数発のオブジェクト検出タスクの固有の弱点を強調します。
論文 参考訳(メタデータ) (2021-09-27T13:04:53Z) - Simpler is Better: Few-shot Semantic Segmentation with Classifier Weight
Transformer [112.95747173442754]
数ショットのセマンティックセグメンテーションモデルは典型的にはCNNエンコーダ、CNNデコーダ、単純な分類器から構成される。
既存のほとんどのメソッドは、新しいクラスに迅速に適応するために、3つのモデルコンポーネント全てをメタ学習する。
本稿では,最も単純なコンポーネントである分類器にのみ焦点をあてて,メタ学習タスクの簡略化を提案する。
論文 参考訳(メタデータ) (2021-08-06T10:20:08Z) - Rectifying the Shortcut Learning of Background: Shared Object
Concentration for Few-Shot Image Recognition [101.59989523028264]
Few-Shot画像分類は、大規模なデータセットから学んだ事前学習された知識を利用して、一連の下流分類タスクに取り組むことを目的としている。
本研究では,Few-Shot LearningフレームワークであるCOSOCを提案する。
論文 参考訳(メタデータ) (2021-07-16T07:46:41Z) - Semi-Supervised Few-Shot Classification with Deep Invertible Hybrid
Models [4.189643331553922]
半教師付き小ショット分類のための潜在空間レベルで識別学習と生成学習を統合するディープ・インバーチブルハイブリッドモデルを提案する。
我々の主な独創性は、これらのコンポーネントを潜在空間レベルで統合することであり、過度な適合を防ぐのに有効である。
論文 参考訳(メタデータ) (2021-05-22T05:55:16Z) - Attribute Propagation Network for Graph Zero-shot Learning [57.68486382473194]
属性伝達ネットワーク (APNet) を導入し, 1) クラス毎に属性ベクトルを生成するグラフ伝搬モデルと, 2) パラメータ化隣人 (NN) 分類器から構成する。
APNetは、2つのゼロショット学習設定と5つのベンチマークデータセットによる実験で、魅力的なパフォーマンスまたは新しい最先端の結果を達成する。
論文 参考訳(メタデータ) (2020-09-24T16:53:40Z) - Meta Learning for Few-Shot One-class Classification [0.0]
メタ学習問題として,一級分類における意味のある特徴の学習を定式化する。
これらの表現を学習するには、類似したタスクからのマルチクラスデータのみが必要である。
数ショットの分類データセットを、数ショットの1クラスの分類シナリオに適応させることで、我々のアプローチを検証する。
論文 参考訳(メタデータ) (2020-09-11T11:35:28Z) - A Few-Shot Sequential Approach for Object Counting [63.82757025821265]
画像中のオブジェクトに逐次出席するクラスアテンション機構を導入し,それらの特徴を抽出する。
提案手法は点レベルのアノテーションに基づいて訓練され,モデルのクラス依存的・クラス依存的側面を乱す新しい損失関数を用いる。
本稿では,FSODやMS COCOなど,さまざまなオブジェクトカウント/検出データセットについて報告する。
論文 参考訳(メタデータ) (2020-07-03T18:23:39Z) - ReMarNet: Conjoint Relation and Margin Learning for Small-Sample Image
Classification [49.87503122462432]
ReMarNet(Relation-and-Margin Learning Network)と呼ばれるニューラルネットワークを導入する。
本手法は,上記2つの分類機構の双方において優れた性能を発揮する特徴を学習するために,異なるバックボーンの2つのネットワークを組み立てる。
4つの画像データセットを用いた実験により,本手法はラベル付きサンプルの小さな集合から識別的特徴を学習するのに有効であることが示された。
論文 参考訳(メタデータ) (2020-06-27T13:50:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。