論文の概要: EduceLab-Scrolls: Verifiable Recovery of Text from Herculaneum Papyri using X-ray CT
- arxiv url: http://arxiv.org/abs/2304.02084v4
- Date: Mon, 20 May 2024 15:20:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-22 01:10:43.955077
- Title: EduceLab-Scrolls: Verifiable Recovery of Text from Herculaneum Papyri using X-ray CT
- Title(参考訳): EduceLab-Scrolls:X線CTによるHerculaneum Papyriからのテキストの復元
- Authors: Stephen Parsons, C. Seth Parker, Christy Chapman, Mami Hayashida, W. Brent Seales,
- Abstract要約: X線CT画像を用いたHerculaneum papyriの隠れテキストを明らかにするための完全なソフトウェアパイプラインを提案する。
EduceLab-Scrollsは、この問題に関する20年間の研究成果を表す包括的オープンデータセットである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We present a complete software pipeline for revealing the hidden texts of the Herculaneum papyri using X-ray CT images. This enhanced virtual unwrapping pipeline combines machine learning with a novel geometric framework linking 3D and 2D images. We also present EduceLab-Scrolls, a comprehensive open dataset representing two decades of research effort on this problem. EduceLab-Scrolls contains a set of volumetric X-ray CT images of both small fragments and intact, rolled scrolls. The dataset also contains 2D image labels that are used in the supervised training of an ink detection model. Labeling is enabled by aligning spectral photography of scroll fragments with X-ray CT images of the same fragments, thus creating a machine-learnable mapping between image spaces and modalities. This alignment permits supervised learning for the detection of "invisible" carbon ink in X-ray CT, a task that is "impossible" even for human expert labelers. To our knowledge, this is the first aligned dataset of its kind and is the largest dataset ever released in the heritage domain. Our method is capable of revealing accurate lines of text on scroll fragments with known ground truth. Revealed text is verified using visual confirmation, quantitative image metrics, and scholarly review. EduceLab-Scrolls has also enabled the discovery, for the first time, of hidden texts from the Herculaneum papyri, which we present here. We anticipate that the EduceLab-Scrolls dataset will generate more textual discovery as research continues.
- Abstract(参考訳): X線CT画像を用いたHerculaneum papyriの隠れテキストを明らかにするための完全なソフトウェアパイプラインを提案する。
この拡張された仮想アンラッピングパイプラインは、機械学習と、3D画像と2D画像をリンクする新しい幾何学的フレームワークを組み合わせる。
EduceLab-Scrollsは、この問題に関する20年間の研究成果を表す包括的オープンデータセットである。
EduceLab-Scrollsには、小さな断片と無傷のロールスクロールの両方のボリュームX線CT画像が含まれている。
データセットには、インク検出モデルの教師付きトレーニングに使用される2Dイメージラベルも含まれている。
ラベリングは、スクロールフラグメントのスペクトル写真と、同じフラグメントのX線CT画像との整列を可能とし、画像空間とモダリティの間の機械学習可能なマッピングを作成する。
このアライメントは、X線CTで「見えない」炭素インクを検出するための教師あり学習を可能にする。
私たちの知る限り、このデータセットはこの種のデータセットとしては初めてのもので、遺産ドメインでリリースされた最大のデータセットです。
本手法は, スクロール断片のテキスト行の正確な行を, 既知の地底真理で明らかにすることができる。
検索されたテキストは、視覚的確認、定量的画像メトリクス、学術的レビューを用いて検証される。
EduceLab-ScrollsはHerculaneum papyriの隠れたテキストを初めて発見した。
EduceLab-Scrollsデータセットは、研究が進むにつれて、より多くのテキスト発見が生成されることを期待しています。
関連論文リスト
- RayEmb: Arbitrary Landmark Detection in X-Ray Images Using Ray Embedding Subspace [0.7937206070844555]
術前CTによるX線画像の術中2D-3D記録は整形外科手術において極めて重要である。
本稿では,X線画像中の任意のランドマーク点を検出することで,この問題に対処する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-10-10T17:36:21Z) - Decoder Pre-Training with only Text for Scene Text Recognition [54.93037783663204]
シーンテキスト認識(STR)事前学習法は,主に合成データセットに依存し,顕著な進歩を遂げている。
STR(DPTR)用テキストのみを用いたDecoder Pre-trainingという新しい手法を提案する。
DPTRはCLIPテキストエンコーダが生成したテキスト埋め込みを擬似視覚埋め込みとして扱い、デコーダの事前訓練に使用する。
論文 参考訳(メタデータ) (2024-08-11T06:36:42Z) - Shadow and Light: Digitally Reconstructed Radiographs for Disease Classification [8.192975020366777]
DRR-RATEは、21,304人のユニークな患者から50,188個の前方デジタル再構成ラジオグラフィー(DRR)から構成される。
各画像は、対応する放射線学テキストレポートと18の病理学クラスのためのバイナリラベルとがペアリングされる。
我々は,既存の大規模胸部X線リソース,特にCheXpertデータセットとCheXnetモデルと併用して,DRR-RATEの適用性を示す。
論文 参考訳(メタデータ) (2024-06-06T02:19:18Z) - CLIM: Contrastive Language-Image Mosaic for Region Representation [58.05870131126816]
Contrastive Language-Image Mosaic (CLIM) は、領域とテキストの表現を整合させる新しいアプローチである。
CLIMは、異なるオープン語彙オブジェクト検出方法を一貫して改善する。
視覚言語モデルの領域表現を効果的に強化することができる。
論文 参考訳(メタデータ) (2023-12-18T17:39:47Z) - Enhancing Scene Text Detectors with Realistic Text Image Synthesis Using
Diffusion Models [63.99110667987318]
DiffTextは、前景のテキストと背景の本質的な特徴をシームレスにブレンドするパイプラインです。
テキストインスタンスが少なくなると、生成したテキストイメージはテキスト検出を支援する他の合成データを一貫して上回ります。
論文 参考訳(メタデータ) (2023-11-28T06:51:28Z) - Volumetric Fast Fourier Convolution for Detecting Ink on the Carbonized
Herculaneum Papyri [23.090618261864886]
本稿では、ボリュームデータに対するFast Fourier Convolution演算子の修正を提案し、Herculaneum papyri上のインク検出のためのセグメンテーションアーキテクチャに適用する。
この課題と,提案した演算子のボリュームデータを含む他のタスクへの適用を奨励するため,実装をリリースする。
論文 参考訳(メタデータ) (2023-08-09T17:00:43Z) - A Simple Framework for Open-Vocabulary Segmentation and Detection [85.21641508535679]
我々は,異なるセグメンテーションと検出データセットから共同で学習する,シンプルなオープン語彙検出フレームワークOpenSeeDを提案する。
まず、事前学習されたテキストエンコーダを導入し、視覚概念を2つのタスクにエンコードし、それらの共通意味空間を学習する。
プレトレーニング後,本モデルでは,セグメンテーションと検出の両方において,競争力あるいは強いゼロショット転送性を示す。
論文 参考訳(メタデータ) (2023-03-14T17:58:34Z) - Text-Based Person Search with Limited Data [66.26504077270356]
テキストベースの人物検索(TBPS)は、画像ギャラリーから対象人物を記述的なテキストクエリで検索することを目的としている。
限られたデータによってもたらされる問題に対処する2つの新しいコンポーネントを持つフレームワークを提案する。
論文 参考訳(メタデータ) (2021-10-20T22:20:47Z) - Improving Joint Learning of Chest X-Ray and Radiology Report by Word
Region Alignment [9.265044250068554]
本稿では,胸部X線画像の事前学習のためのJoImTeRNet(JoImTeRNet)を提案する。
このモデルは、視覚的テキストマッチングのためのグローバル画像文レベルとローカル画像領域語レベルの両方で事前訓練された。
論文 参考訳(メタデータ) (2021-09-04T22:58:35Z) - Self-Supervised Multi-Modal Alignment for Whole Body Medical Imaging [70.52819168140113]
我々は、英国バイオバンクの2万名以上の被験者のデータセットを使用し、全体Dixon法磁気共鳴法(MR)スキャンとデュアルエネルギーX線吸収率法(DXA)スキャンを併用した。
マルチモーダル画像マッチングコントラストフレームワークを導入し、同一対象の異なるモダリティスキャンを高精度にマッチングすることができる。
適応がなければ、この対照的なトレーニングステップで学習した対応が、自動クロスモーダルスキャン登録の実行に利用できることを示す。
論文 参考訳(メタデータ) (2021-07-14T12:35:05Z) - Bone Structures Extraction and Enhancement in Chest Radiographs via CNN
Trained on Synthetic Data [2.969705152497174]
U-Net FCNN を用いた胸部X線写真における骨構造抽出のための深層学習に基づく画像処理手法を提案する。
U-Netは、完全に監督された環境でタスクを達成するために訓練された。
本手法は実X線データに適用可能であることを示すとともに,NIH Chest X-Ray-14データセットに結果を表示する。
論文 参考訳(メタデータ) (2020-03-20T20:27:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。