論文の概要: TM-vector: A Novel Forecasting Approach for Market stock movement with a
Rich Representation of Twitter and Market data
- arxiv url: http://arxiv.org/abs/2304.02094v1
- Date: Mon, 13 Mar 2023 18:55:41 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-09 05:24:07.676624
- Title: TM-vector: A Novel Forecasting Approach for Market stock movement with a
Rich Representation of Twitter and Market data
- Title(参考訳): TM-vector:Twitterとマーケットデータの豊かな表現による市場ストックムーブメントの新しい予測手法
- Authors: Faraz Sasani, Ramin Mousa, Ali Karkehabadi, Samin Dehbashi, Ali
Mohammadi
- Abstract要約: TM-vectorを導入し、次にこのベクトルを使ってIndRNNをトレーニングし、最終的に市場のユーザの振る舞いをモデル化します。
提案モデルでは,抽出したTwitter機能と市場情報の両方でTM-vectorを同時にトレーニングする。
提案手法の有効性には様々な要因が用いられている。
- 参考スコア(独自算出の注目度): 1.5749416770494706
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Stock market forecasting has been a challenging part for many analysts and
researchers. Trend analysis, statistical techniques, and movement indicators
have traditionally been used to predict stock price movements, but text
extraction has emerged as a promising method in recent years. The use of neural
networks, especially recurrent neural networks, is abundant in the literature.
In most studies, the impact of different users was considered equal or ignored,
whereas users can have other effects. In the current study, we will introduce
TM-vector and then use this vector to train an IndRNN and ultimately model the
market users' behaviour. In the proposed model, TM-vector is simultaneously
trained with both the extracted Twitter features and market information.
Various factors have been used for the effectiveness of the proposed
forecasting approach, including the characteristics of each individual user,
their impact on each other, and their impact on the market, to predict market
direction more accurately. Dow Jones 30 index has been used in current work.
The accuracy obtained for predicting daily stock changes of Apple is based on
various models, closed to over 95\% and for the other stocks is significant.
Our results indicate the effectiveness of TM-vector in predicting stock market
direction.
- Abstract(参考訳): 株式市場の予測は多くのアナリストや研究者にとって難しい部分だった。
トレンド分析、統計手法、動き指標は伝統的に株価変動予測に用いられてきたが、近年はテキスト抽出が有望な手法として登場している。
ニューラルネットワーク、特にリカレントニューラルネットワークの使用は、文献に豊富である。
ほとんどの研究では、異なるユーザーの影響は同等か無視されるが、他の効果がある。
現在の研究では、TM-vectorを導入し、このベクトルを使ってIndRNNをトレーニングし、最終的に市場のユーザの振る舞いをモデル化します。
提案モデルでは,抽出したTwitter機能と市場情報の両方でTM-vectorを同時にトレーニングする。
市場方向性をより正確に予測するために,各ユーザの特性,ユーザへの影響,市場への影響など,提案手法の有効性に様々な要因が用いられている。
dow jones 30 indexは、現在の研究で使われている。
Appleの毎日の株価変動を予測するために得られた精度は、様々なモデルに基づいており、95%以上までクローズドであり、他の株も重要なものだ。
本結果は,TMベクターが株式市場の方向性を予測する上で有効であることを示す。
関連論文リスト
- Combining supervised and unsupervised learning methods to predict financial market movements [0.0]
創発的で確立した金融市場から抽出した新たな特徴を同定する。
私たちは、Bitcoin、Pepecoin、Nasdaqの市場からのマイクロロウソクで構成される約6ヶ月のデータを使用しました。
我々は、市場の動きを分類するためにランダムフォレスト(RF)やK-Nearest Neighbours(KNN)など、さまざまな機械学習戦略の性能について検討した。
論文 参考訳(メタデータ) (2024-08-19T13:17:36Z) - GraphCNNpred: A stock market indices prediction using a Graph based deep learning system [0.0]
我々は,テキストS&textP 500,NASDAQ,DJI,NYSE,RASELの指標の傾向を予測するために,さまざまなデータソースに適用可能なグラフニューラルネットワークベースの畳み込みニューラルネットワーク(CNN)モデルを提案する。
実験の結果,F測度の観点からは,ベースラインアルゴリズム上のすべての指標の予測性能が約4%から15%に向上した。
論文 参考訳(メタデータ) (2024-07-04T09:14:24Z) - Beyond Trend Following: Deep Learning for Market Trend Prediction [49.89480853499917]
我々は、将来の市場動向を予測するために人工知能と機械学習技術を使うことを提唱する。
これらの予測は、適切に実行されれば、リターンを増やし、損失を減らすことで資産運用者のパフォーマンスを向上させることができる。
論文 参考訳(メタデータ) (2024-06-10T11:42:30Z) - Cryptocurrency Portfolio Optimization by Neural Networks [81.20955733184398]
本稿では,これらの投資商品を活用するために,ニューラルネットワークに基づく効果的なアルゴリズムを提案する。
シャープ比を最大化するために、各アセットの割り当て重量を時間間隔で出力するディープニューラルネットワークを訓練する。
ネットワークの特定の資産に対するバイアスを規制する新たな損失項を提案し,最小分散戦略に近い割り当て戦略をネットワークに学習させる。
論文 参考訳(メタデータ) (2023-10-02T12:33:28Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
長期的地平線上での多段階の株価予測は、ボラティリティの予測に不可欠である。
多段階の株価予測に対する現在の解決策は、主に単一段階の分類に基づく予測のために設計されている。
深層階層型変分オートコーダ(VAE)と拡散確率的手法を組み合わせてセック2seqの株価予測を行う。
本モデルでは, 予測精度と分散性の観点から, 最先端の解よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-18T16:21:15Z) - Support for Stock Trend Prediction Using Transformers and Sentiment
Analysis [3.147603836269998]
技術ストックデータと感情分析を用いて、長時間のウィンドウ上で正確なストックトレンド予測を行うトランスフォーマーモデルを開発した。
本稿では,日次技術ストックデータと,約3年にわたるトップニュース見出しデータを含む新しいデータセットについても紹介する。
論文 参考訳(メタデータ) (2023-05-18T03:26:39Z) - ASPEST: Bridging the Gap Between Active Learning and Selective
Prediction [56.001808843574395]
選択予測は、不確実な場合の予測を棄却する信頼性のあるモデルを学ぶことを目的としている。
アクティブラーニングは、最も有意義な例を問うことで、ラベリングの全体、すなわち人間の依存度を下げることを目的としている。
本研究では,移動対象領域からより情報のあるサンプルを検索することを目的とした,新たな学習パラダイムである能動的選択予測を導入する。
論文 参考訳(メタデータ) (2023-04-07T23:51:07Z) - Predicting The Stock Trend Using News Sentiment Analysis and Technical
Indicators in Spark [0.0]
機械学習モデルは、ある日のラベルを予測するのに役立つ。
その日に発表されたすべてのニュースから、その日の総合的な感情スコアが作成されます。
ランダムフォレストは63.58%のテスト精度で最高の性能を発揮した。
論文 参考訳(メタデータ) (2022-01-19T10:22:33Z) - A Sentiment Analysis Approach to the Prediction of Market Volatility [62.997667081978825]
金融ニュースとツイートから抽出された感情とFTSE100の動きの関係を調べました。
ニュース見出しから得られた感情は、市場のリターンを予測するシグナルとして使われる可能性があるが、ボラティリティには当てはまらない。
我々は,新たな情報の到着に応じて,市場の変動を予測するための正確な分類器を開発した。
論文 参考訳(メタデータ) (2020-12-10T01:15:48Z) - Capturing dynamics of post-earnings-announcement drift using genetic
algorithm-optimised supervised learning [3.42658286826597]
PEAD(Post-Earnings-Announcement Drift)は、最も研究されている株式市場の異常の一つである。
代わりに、機械学習ベースのアプローチを使用して、大規模なストックグループのデータを使用してPEADダイナミクスをキャプチャすることを目的としています。
論文 参考訳(メタデータ) (2020-09-07T13:27:06Z) - TAGNN: Target Attentive Graph Neural Networks for Session-based
Recommendation [66.04457457299218]
セッションベースレコメンデーションのための新しいターゲット注意グラフニューラルネットワーク(TAGNN)モデルを提案する。
TAGNNでは、ターゲット・アウェア・アテンションは、様々なターゲット項目に関して異なるユーザ関心を適応的に活性化する。
学習した関心表現ベクトルは、異なる対象項目によって変化し、モデルの表現性を大幅に改善する。
論文 参考訳(メタデータ) (2020-05-06T14:17:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。