Learning to Recover Spectral Reflectance from RGB Images
- URL: http://arxiv.org/abs/2304.02162v2
- Date: Tue, 23 Apr 2024 01:48:32 GMT
- Title: Learning to Recover Spectral Reflectance from RGB Images
- Authors: Dong Huo, Jian Wang, Yiming Qian, Yee-Hong Yang,
- Abstract summary: spectral reflectance recovery (SRR) from RGB images is challenging and costly.
Most existing approaches are trained on synthetic images and utilize the same parameters for all unseen testing images.
We propose a self-supervised meta-auxiliary learning (MAXL) strategy that fine-tunes the well-trained network parameters with each testing image to combine external with internal information.
- Score: 20.260831758913902
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper tackles spectral reflectance recovery (SRR) from RGB images. Since capturing ground-truth spectral reflectance and camera spectral sensitivity are challenging and costly, most existing approaches are trained on synthetic images and utilize the same parameters for all unseen testing images, which are suboptimal especially when the trained models are tested on real images because they never exploit the internal information of the testing images. To address this issue, we adopt a self-supervised meta-auxiliary learning (MAXL) strategy that fine-tunes the well-trained network parameters with each testing image to combine external with internal information. To the best of our knowledge, this is the first work that successfully adapts the MAXL strategy to this problem. Instead of relying on naive end-to-end training, we also propose a novel architecture that integrates the physical relationship between the spectral reflectance and the corresponding RGB images into the network based on our mathematical analysis. Besides, since the spectral reflectance of a scene is independent to its illumination while the corresponding RGB images are not, we recover the spectral reflectance of a scene from its RGB images captured under multiple illuminations to further reduce the unknown. Qualitative and quantitative evaluations demonstrate the effectiveness of our proposed network and of the MAXL. Our code and data are available at https://github.com/Dong-Huo/SRR-MAXL.
Related papers
- Contourlet Refinement Gate Framework for Thermal Spectrum Distribution Regularized Infrared Image Super-Resolution [54.293362972473595]
Image super-resolution (SR) aims to reconstruct high-resolution (HR) images from their low-resolution (LR) counterparts.
Current approaches to address SR tasks are either dedicated to extracting RGB image features or assuming similar degradation patterns.
We propose a Contourlet refinement gate framework to restore infrared modal-specific features while preserving spectral distribution fidelity.
arXiv Detail & Related papers (2024-11-19T14:24:03Z) - Monocular Identity-Conditioned Facial Reflectance Reconstruction [71.90507628715388]
Existing methods rely on a large amount of light-stage captured data to learn facial reflectance models.
We learn the reflectance prior in image space rather than UV space and present a framework named ID2Reflectance.
Our framework can directly estimate the reflectance maps of a single image while using limited reflectance data for training.
arXiv Detail & Related papers (2024-03-30T09:43:40Z) - Limitations of Data-Driven Spectral Reconstruction -- Optics-Aware Analysis and Mitigation [22.07699685165064]
Recent efforts in data-driven spectral reconstruction aim at extracting spectral information from RGB images captured by cost-effective RGB cameras.
We evaluate both the practical limitations with respect to current datasets and overfitting, as well as fundamental limitations with respect to the nature of the information encoded in the RGB images.
We propose to exploit the combination of metameric data augmentation and optical lens aberrations to improve the encoding of the metameric information into the RGB image.
arXiv Detail & Related papers (2024-01-08T11:46:45Z) - Attentive Multimodal Fusion for Optical and Scene Flow [24.08052492109655]
Existing methods typically rely solely on RGB images or fuse the modalities at later stages.
We propose a novel deep neural network approach named FusionRAFT, which enables early-stage information fusion between sensor modalities.
Our approach exhibits improved robustness in the presence of noise and low-lighting conditions that affect the RGB images.
arXiv Detail & Related papers (2023-07-28T04:36:07Z) - Learning Enriched Illuminants for Cross and Single Sensor Color
Constancy [182.4997117953705]
We propose cross-sensor self-supervised training to train the network.
We train the network by randomly sampling the artificial illuminants in a sensor-independent manner.
Experiments show that our cross-sensor model and single-sensor model outperform other state-of-the-art methods by a large margin.
arXiv Detail & Related papers (2022-03-21T15:45:35Z) - Semantic-embedded Unsupervised Spectral Reconstruction from Single RGB
Images in the Wild [48.44194221801609]
We propose a new lightweight and end-to-end learning-based framework to tackle this challenge.
We progressively spread the differences between input RGB images and re-projected RGB images from recovered HS images via effective camera spectral response function estimation.
Our method significantly outperforms state-of-the-art unsupervised methods and even exceeds the latest supervised method under some settings.
arXiv Detail & Related papers (2021-08-15T05:19:44Z) - Tuning IR-cut Filter for Illumination-aware Spectral Reconstruction from
RGB [84.1657998542458]
It has been proven that the reconstruction accuracy relies heavily on the spectral response of the RGB camera in use.
This paper explores the filter-array based color imaging mechanism of existing RGB cameras, and proposes to design the IR-cut filter properly for improved spectral recovery.
arXiv Detail & Related papers (2021-03-26T19:42:21Z) - Learning to Enhance Visual Quality via Hyperspectral Domain Mapping [8.365634649800658]
SpecNet computes spectral profile to estimate pixel-wise dynamic range adjustment of a given image.
We incorporate a self-supervision and a spectral profile regularization network to infer a plausible HSI from an RGB image.
arXiv Detail & Related papers (2021-02-10T13:27:34Z) - Deep Burst Super-Resolution [165.90445859851448]
We propose a novel architecture for the burst super-resolution task.
Our network takes multiple noisy RAW images as input, and generates a denoised, super-resolved RGB image as output.
In order to enable training and evaluation on real-world data, we additionally introduce the BurstSR dataset.
arXiv Detail & Related papers (2021-01-26T18:57:21Z) - Hierarchical Regression Network for Spectral Reconstruction from RGB
Images [21.551899202524904]
We propose a 4-level Hierarchical Regression Network (HRNet) with PixelShuffle layer as inter-level interaction.
We evaluate proposed HRNet with other architectures and techniques by participating in NTIRE 2020 Challenge on Spectral Reconstruction from RGB Images.
arXiv Detail & Related papers (2020-05-10T16:06:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.