Estimating Patterns of Classical and Quantum Skyrmion States
- URL: http://arxiv.org/abs/2304.02201v1
- Date: Wed, 5 Apr 2023 03:26:57 GMT
- Title: Estimating Patterns of Classical and Quantum Skyrmion States
- Authors: Vladimir V. Mazurenko, Ilia A. Iakovlev, Oleg M. Sotnikov and Mikhail
I. Katsnelson
- Abstract summary: We show that for classical spin systems there is a whole pool of machine approaches allowing their accurate phase classification and quantitative description.
One needs to find the ways to imitate quantum skyrmions on near-term quantum computers.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this review we discuss the latest results concerning development of the
machine learning algorithms for characterization of the magnetic skyrmions that
are topologically-protected magnetic textures originated from the
Dzyaloshinskii-Moriya interaction that competes Heisenberg isotropic exchange
in ferromagnets. We show that for classical spin systems there is a whole pool
of machine approaches allowing their accurate phase classification and
quantitative description on the basis of few magnetization snapshots. In turn,
investigation of the quantum skyrmions is a less explored issue, since there
are fundamental limitations on the simulation of such wave functions with
classical supercomputers. One needs to find the ways to imitate quantum
skyrmions on near-term quantum computers. In this respect, we discuss
implementation of the method for estimating structural complexity of classical
objects for characterization of the quantum skyrmion state on the basis of
limited number of bitstrings obtained from the projective measurements.
Related papers
- Colloquium: Quantum Properties and Functionalities of Magnetic Skyrmions [40.282478038074984]
Competing magnetic interactions may stabilize smooth magnetization textures that can be characterized by a topological winding number.
Such textures, which are spatially localized within a two-dimensional plane, are commonly known as skyrmions.
This Colloquium considers quantum effects associated with skyrmion textures: their theoretical origins, the experimental and material challenges associated with their detection, and the promise of exploiting them for quantum operations.
arXiv Detail & Related papers (2024-10-15T09:27:20Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Ground state energy and magnetization curve of a frustrated magnetic
system from real-time evolution on a digital quantum processor [0.47191037525744733]
We show how to construct efficient quantum circuits to implement time evolution for the Heisenberg model.
We also give an empirical demonstration on small systems that the hybrid algorithms can efficiently find the ground state energy and the magnetization curve.
arXiv Detail & Related papers (2024-01-05T18:57:34Z) - Stability of a quantum skyrmion: projective measurements and the quantum
Zeno effect [0.0]
Magnetic skyrmions are vortex-like quasiparticles characterized by long lifetime and remarkable topological properties.
We theoretically analyze the dynamics of a quantum skyrmion subject to local projective measurements.
We show that by performing repetitive measurements on a quantum skyrmion, it can be completely stabilized through an analog of the quantum Zeno effect.
arXiv Detail & Related papers (2023-08-21T20:03:25Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Reconstruction of classical skyrmions from Anderson towers: quantum
Darwinism in action [0.0]
We show that the classical skyrmion spin order can be reconstructed using only the low-energy part of the spectrum of the corresponding quantum spin Hamiltonian.
The results allow us to take a fresh look at the problem of quantum antiferromagnetism.
arXiv Detail & Related papers (2022-10-08T05:23:39Z) - Skyrmion Qubits: A New Class of Quantum Logic Elements Based on
Nanoscale Magnetization [0.0]
We introduce a new class of primitive building blocks for realizing quantum logic elements based on nanoscale magnetization textures called skyrmions.
In a skyrmion qubit, information is stored in the quantum degree of helicity, and the logical states can be adjusted by electric and magnetic fields.
arXiv Detail & Related papers (2021-08-04T18:00:04Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
A standard approach to quantum computing is based on the idea of promoting a classically simulable and fault-tolerant set of operations.
We show how the addition of noisy magic resources allows one to boost classical quasiprobability simulations of a quantum circuit.
arXiv Detail & Related papers (2021-03-12T20:58:41Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Quantum Hall phase emerging in an array of atoms interacting with
photons [101.18253437732933]
Topological quantum phases underpin many concepts of modern physics.
Here, we reveal that the quantum Hall phase with topological edge states, spectral Landau levels and Hofstadter butterfly can emerge in a simple quantum system.
Such systems, arrays of two-level atoms (qubits) coupled to light being described by the classical Dicke model, have recently been realized in experiments with cold atoms and superconducting qubits.
arXiv Detail & Related papers (2020-03-18T14:56:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.