Stability of a quantum skyrmion: projective measurements and the quantum
Zeno effect
- URL: http://arxiv.org/abs/2308.11014v2
- Date: Wed, 6 Sep 2023 21:26:15 GMT
- Title: Stability of a quantum skyrmion: projective measurements and the quantum
Zeno effect
- Authors: Fabio Salvati, Mikhail I. Katsnelson, Andrey A. Bagrov, Tom Westerhout
- Abstract summary: Magnetic skyrmions are vortex-like quasiparticles characterized by long lifetime and remarkable topological properties.
We theoretically analyze the dynamics of a quantum skyrmion subject to local projective measurements.
We show that by performing repetitive measurements on a quantum skyrmion, it can be completely stabilized through an analog of the quantum Zeno effect.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Magnetic skyrmions are vortex-like quasiparticles characterized by long
lifetime and remarkable topological properties. That makes them a promising
candidate for the role of information carriers in magnetic information storage
and processing devices. Although considerable progress has been made in
studying skyrmions in classical systems, little is known about the quantum
case: quantum skyrmions cannot be directly observed by probing the local
magnetization of the system, and the notion of topological protection is
elusive in the quantum realm. Here, we explore the potential robustness of
quantum skyrmions in comparison to their classical counterparts. We
theoretically analyze the dynamics of a quantum skyrmion subject to local
projective measurements and demonstrate that the properties of the skyrmionic
quantum state change very little upon external perturbations. We further show
that by performing repetitive measurements on a quantum skyrmion, it can be
completely stabilized through an analog of the quantum Zeno effect.
Related papers
- Colloquium: Quantum Properties and Functionalities of Magnetic Skyrmions [40.282478038074984]
Competing magnetic interactions may stabilize smooth magnetization textures that can be characterized by a topological winding number.
Such textures, which are spatially localized within a two-dimensional plane, are commonly known as skyrmions.
This Colloquium considers quantum effects associated with skyrmion textures: their theoretical origins, the experimental and material challenges associated with their detection, and the promise of exploiting them for quantum operations.
arXiv Detail & Related papers (2024-10-15T09:27:20Z) - Skyrmion Qubits: Challenges For Future Quantum Computing Applications [0.0]
Magnetic nano-skyrmions develop quantized helicity excitations.
Quantum tunneling between nano-skyrmions possessing distinct helicities is indicative of the quantum nature of these particles.
This Perspective aims to discuss developments and challenges in this new research avenue in quantum magnetism and quantum information.
arXiv Detail & Related papers (2024-01-08T09:51:14Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Estimating Patterns of Classical and Quantum Skyrmion States [0.0]
We show that for classical spin systems there is a whole pool of machine approaches allowing their accurate phase classification and quantitative description.
One needs to find the ways to imitate quantum skyrmions on near-term quantum computers.
arXiv Detail & Related papers (2023-04-05T03:26:57Z) - Reconstruction of classical skyrmions from Anderson towers: quantum
Darwinism in action [0.0]
We show that the classical skyrmion spin order can be reconstructed using only the low-energy part of the spectrum of the corresponding quantum spin Hamiltonian.
The results allow us to take a fresh look at the problem of quantum antiferromagnetism.
arXiv Detail & Related papers (2022-10-08T05:23:39Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
arXiv Detail & Related papers (2021-03-02T18:56:44Z) - Simulation of Collective Neutrino Oscillations on a Quantum Computer [117.44028458220427]
We present the first simulation of a small system of interacting neutrinos using current generation quantum devices.
We introduce a strategy to overcome limitations in the natural connectivity of the qubits and use it to track the evolution of entanglement in real-time.
arXiv Detail & Related papers (2021-02-24T20:51:25Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Probing the topology of the quantum analog of a classical skyrmion [0.0]
In magnetism, skyrmions correspond to classical three-dimensional spin textures.
We show that the quantum skyrmion state can still be identified and fully characterized.
arXiv Detail & Related papers (2020-04-28T13:52:02Z) - Quantum Hall phase emerging in an array of atoms interacting with
photons [101.18253437732933]
Topological quantum phases underpin many concepts of modern physics.
Here, we reveal that the quantum Hall phase with topological edge states, spectral Landau levels and Hofstadter butterfly can emerge in a simple quantum system.
Such systems, arrays of two-level atoms (qubits) coupled to light being described by the classical Dicke model, have recently been realized in experiments with cold atoms and superconducting qubits.
arXiv Detail & Related papers (2020-03-18T14:56:39Z) - Entropic Uncertainty Relations and the Quantum-to-Classical transition [77.34726150561087]
We aim to shed some light on the quantum-to-classical transition as seen through the analysis of uncertainty relations.
We employ entropic uncertainty relations to show that it is only by the inclusion of imprecision in our model of macroscopic measurements that we can prepare a system with two simultaneously well-defined quantities.
arXiv Detail & Related papers (2020-03-04T14:01:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.