論文の概要: An Ensemble Method to Automatically Grade Diabetic Retinopathy with
Optical Coherence Tomography Angiography Images
- arxiv url: http://arxiv.org/abs/2212.06265v1
- Date: Mon, 12 Dec 2022 22:06:47 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-14 14:49:01.535032
- Title: An Ensemble Method to Automatically Grade Diabetic Retinopathy with
Optical Coherence Tomography Angiography Images
- Title(参考訳): 光コヒーレンス断層画像を用いた糖尿病網膜症自動評価法
- Authors: Yuhan Zheng, Fuping Wu, Bart{\l}omiej W. Papie\.z
- Abstract要約: 糖尿病網膜症解析チャレンジ(DRAC)2022から得られる糖尿病網膜症(DR)画像を自動的に評価するアンサンブル法を提案する。
まず、最先端の分類ネットワークを採用し、利用可能なデータセットの異なる分割でUW-OCTA画像のグレードをトレーニングする。
最終的に、25のモデルを取得し、そのうち上位16のモデルを選択し、アンサンブルして最終的な予測を生成する。
- 参考スコア(独自算出の注目度): 4.640835690336653
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diabetic retinopathy (DR) is a complication of diabetes, and one of the major
causes of vision impairment in the global population. As the early-stage
manifestation of DR is usually very mild and hard to detect, an accurate
diagnosis via eye-screening is clinically important to prevent vision loss at
later stages. In this work, we propose an ensemble method to automatically
grade DR using ultra-wide optical coherence tomography angiography (UW-OCTA)
images available from Diabetic Retinopathy Analysis Challenge (DRAC) 2022.
First, we adopt the state-of-the-art classification networks, i.e., ResNet,
DenseNet, EfficientNet, and VGG, and train them to grade UW-OCTA images with
different splits of the available dataset. Ultimately, we obtain 25 models, of
which, the top 16 models are selected and ensembled to generate the final
predictions. During the training process, we also investigate the multi-task
learning strategy, and add an auxiliary classification task, the Image Quality
Assessment, to improve the model performance. Our final ensemble model achieved
a quadratic weighted kappa (QWK) of 0.9346 and an Area Under Curve (AUC) of
0.9766 on the internal testing dataset, and the QWK of 0.839 and the AUC of
0.8978 on the DRAC challenge testing dataset.
- Abstract(参考訳): 糖尿病網膜症(英語版)(dr)は糖尿病の合併症であり、世界人口における視覚障害の主な原因の1つである。
DRの早期発現は、通常非常に軽度で検出が難しいため、眼球スクリーニングによる正確な診断は、後段の視力喪失を防ぐために臨床的に重要である。
本研究では,糖尿病網膜症解析チャレンジ(DRAC)2022から入手可能なUW-OCTA画像を用いて,DRを自動的に評価するアンサンブル手法を提案する。
まず、最先端の分類ネットワーク、すなわちresnet, densenet, efficientnet, vggを採用し、利用可能なデータセットの異なる分割を持つuw-octaイメージのグレードを訓練する。
最終的に、25モデルを取得し、そのうち上位16モデルを選択して、最終的な予測を生成する。
また、学習過程において、マルチタスク学習戦略についても検討し、モデル性能を改善するために補助的な分類タスクである画像品質評価を追加する。
最終アンサンブルモデルでは,内部テストデータセットでは0.9346の2次重み付きカッパ(QWK),内部テストデータセットでは0.9766のエリアアンダーカーブ(AUC),DRACチャレンジテストデータセットでは0.839のQWKと0.8978のAUCを達成した。
関連論文リスト
- Deep Learning Ensemble for Predicting Diabetic Macular Edema Onset Using Ultra-Wide Field Color Fundus Image [2.9945018168793025]
糖尿病性黄斑浮腫(DME)は糖尿病の重篤な合併症である。
1年以内にci-DMEの発症を予測するアンサンブル法を提案する。
論文 参考訳(メタデータ) (2024-10-09T02:16:29Z) - Controllable retinal image synthesis using conditional StyleGAN and latent space manipulation for improved diagnosis and grading of diabetic retinopathy [0.0]
本稿では,高忠実かつ多様なDRファウンダス画像を生成するためのフレームワークを提案する。
生成画像内のDR重大度と視覚的特徴を包括的に制御する。
我々は、条件付きで生成したDR画像をグレードで操作し、データセットの多様性をさらに向上する。
論文 参考訳(メタデータ) (2024-09-11T17:08:28Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
LVM-Medは、大規模医療データセットに基づいてトレーニングされた、最初のディープネットワークファミリーである。
55の公開データセットから約13万の医療画像を収集しました。
LVM-Medは、多くの最先端の教師付き、自己監督型、基礎モデルよりも経験的に優れている。
論文 参考訳(メタデータ) (2023-06-20T22:21:34Z) - DRAC: Diabetic Retinopathy Analysis Challenge with Ultra-Wide Optical
Coherence Tomography Angiography Images [51.27125547308154]
第25回医用画像コンピューティング・コンピュータ支援介入国際会議(MICCAI 2022)にともなうDRAC糖尿病網膜症解析チャレンジの企画を行った。
この課題は、DR病変の分節化、画像品質評価、DRグレーディングの3つのタスクから構成される。
本稿では,課題の各課題について,トップパフォーマンスのソリューションと結果の要約と分析を行う。
論文 参考訳(メタデータ) (2023-04-05T12:04:55Z) - A ResNet is All You Need? Modeling A Strong Baseline for Detecting
Referable Diabetic Retinopathy in Fundus Images [0.0]
我々は、シンプルな標準のResNet-18アーキテクチャに基づいて、このタスクの強力なベースラインをモデル化する。
我々のモデルは、異なる公開データセットから得られた61007個のテスト画像の組み合わせで、AUC = 0.955を達成した。
論文 参考訳(メタデータ) (2022-10-06T19:40:56Z) - Blindness (Diabetic Retinopathy) Severity Scale Detection [0.0]
糖尿病網膜症(英: Diabetic retinopathy, DR)は、糖尿病の重篤な合併症である。
DRのタイムリーな診断と治療は、視力の喪失を避けるために重要である。
本稿では,網膜基底画像の自動スクリーニングのための新しい深層学習手法を提案する。
論文 参考訳(メタデータ) (2021-10-04T11:31:15Z) - FEDI: Few-shot learning based on Earth Mover's Distance algorithm
combined with deep residual network to identify diabetic retinopathy [3.6623193507510012]
本稿では,Earth Moverのアルゴリズムをベースとした,糖尿病網膜症の診断支援を目的とした深部残像ネットワークの複数ショット学習モデルを提案する。
我々は,1000サンプルデータの39カテゴリに基づいて,数ショット学習のためのトレーニングと検証の分類タスクを構築し,深層残留ネットワークを訓練し,経験的事前学習モデルを得る。
事前学習モデルの重みに基づいて、Earth MoverのDistanceアルゴリズムは画像間の距離を計算し、画像間の類似性を求め、モデルのパラメータを変更してトレーニングモデルの精度を向上させる。
論文 参考訳(メタデータ) (2021-08-22T13:05:02Z) - An Interpretable Multiple-Instance Approach for the Detection of
referable Diabetic Retinopathy from Fundus Images [72.94446225783697]
基礎画像における参照糖尿病網膜症検出のための機械学習システムを提案する。
画像パッチから局所情報を抽出し,アテンション機構により効率的に組み合わせることで,高い分類精度を実現することができる。
我々は,現在入手可能な網膜画像データセットに対するアプローチを評価し,最先端の性能を示す。
論文 参考訳(メタデータ) (2021-03-02T13:14:15Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
我々は,従来のトランスファー学習の改良にマルチソース・トランスファー・ラーニングを応用して,CTスキャンによる新型コロナウイルスの分類を提案する。
マルチソースファインチューニングアプローチでは、ImageNetで微調整されたベースラインモデルよりも優れています。
我々の最高のパフォーマンスモデルは、0.893の精度と0.897のリコールスコアを達成でき、ベースラインのリコールスコアを9.3%上回った。
論文 参考訳(メタデータ) (2020-09-22T11:53:06Z) - A Benchmark for Studying Diabetic Retinopathy: Segmentation, Grading,
and Transferability [76.64661091980531]
糖尿病患者は糖尿病網膜症(DR)を発症するリスクがある
コンピュータ支援型DR診断は、DRの早期検出と重度評価のための有望なツールである。
このデータセットは、ピクセルレベルのDR関連病変アノテーションを持つ1,842枚の画像と、6人の眼科医によって評価された画像レベルのラベルを持つ1,000枚の画像を有する。
論文 参考訳(メタデータ) (2020-08-22T07:48:04Z) - AGE Challenge: Angle Closure Glaucoma Evaluation in Anterior Segment
Optical Coherence Tomography [61.405005501608706]
アングル閉鎖緑内障(ACG)は開角緑内障よりも攻撃的な疾患である。
前部セグメント光コヒーレンス・トモグラフィー(AS-OCT)は、開角度から角度閉鎖を識別する高速で接触のない方法を提供する。
既存のメソッドを均一に評価するためのパブリックなAS-OCTデータセットは存在しない。
私たちは,MICCAI 2019と共同で開催したAngle closure Glaucoma Evaluation Challenge (AGE)を組織した。
論文 参考訳(メタデータ) (2020-05-05T14:55:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。