論文の概要: Generative Novel View Synthesis with 3D-Aware Diffusion Models
- arxiv url: http://arxiv.org/abs/2304.02602v1
- Date: Wed, 5 Apr 2023 17:15:47 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-06 11:57:15.956172
- Title: Generative Novel View Synthesis with 3D-Aware Diffusion Models
- Title(参考訳): 3次元拡散モデルによる新しいビュー生成
- Authors: Eric R. Chan, Koki Nagano, Matthew A. Chan, Alexander W. Bergman,
Jeong Joon Park, Axel Levy, Miika Aittala, Shalini De Mello, Tero Karras and
Gordon Wetzstein
- Abstract要約: 単一入力画像から3D対応の新規ビュー合成のための拡散モデルを提案する。
提案手法は既存の2次元拡散バックボーンを利用するが,重要な点として,幾何学的先行を3次元特徴体積の形で組み込む。
新たなビュー生成に加えて,本手法は3次元一貫性シーケンスを自己回帰的に合成する機能を備えている。
- 参考スコア(独自算出の注目度): 96.78397108732233
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a diffusion-based model for 3D-aware generative novel view
synthesis from as few as a single input image. Our model samples from the
distribution of possible renderings consistent with the input and, even in the
presence of ambiguity, is capable of rendering diverse and plausible novel
views. To achieve this, our method makes use of existing 2D diffusion backbones
but, crucially, incorporates geometry priors in the form of a 3D feature
volume. This latent feature field captures the distribution over possible scene
representations and improves our method's ability to generate view-consistent
novel renderings. In addition to generating novel views, our method has the
ability to autoregressively synthesize 3D-consistent sequences. We demonstrate
state-of-the-art results on synthetic renderings and room-scale scenes; we also
show compelling results for challenging, real-world objects.
- Abstract(参考訳): 単一入力画像から3D対応の新規ビュー合成のための拡散モデルを提案する。
我々のモデルでは、入力と一致したレンダリングの可能な分布からサンプルを抽出し、あいまいさがあっても、多様で妥当な斬新なビューを描画することができる。
そこで本手法では,既存の2次元拡散バックボーンを用いるが,重要な点として,幾何学的先行を3次元特徴体積の形で組み込む。
この潜在機能フィールドは、可能なシーン表現上の分布をキャプチャし、ビュー一貫性のある新規レンダリングを生成する方法の能力を改善する。
新たなビュー生成に加えて,本手法は3次元一貫性シーケンスを自己回帰的に合成する機能を備えている。
我々は、合成レンダリングとルームスケールのシーンに関する最先端の結果を示し、また、挑戦的で現実世界のオブジェクトに対して魅力的な結果を示す。
関連論文リスト
- ViewCrafter: Taming Video Diffusion Models for High-fidelity Novel View Synthesis [63.169364481672915]
単一またはスパース画像からジェネリックシーンの高忠実な新規ビューを合成する新しい方法である textbfViewCrafter を提案する。
提案手法は,映像拡散モデルの強力な生成能力と,ポイントベース表現によって提供される粗い3D手がかりを利用して高品質な映像フレームを生成する。
論文 参考訳(メタデータ) (2024-09-03T16:53:19Z) - Denoising Diffusion via Image-Based Rendering [54.20828696348574]
実世界の3Dシーンの高速かつ詳細な再構築と生成を可能にする最初の拡散モデルを提案する。
まず、大きな3Dシーンを効率よく正確に表現できる新しいニューラルシーン表現であるIBプレーンを導入する。
第二に,2次元画像のみを用いて,この新たな3次元シーン表現の事前学習を行うためのデノイング拡散フレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-05T19:00:45Z) - Morphable Diffusion: 3D-Consistent Diffusion for Single-image Avatar Creation [14.064983137553353]
我々は、制御可能な光リアルな人間のアバターを作成するために、生成拡散モデルの品質と機能を高めることを目的としている。
我々は,3次元形態素モデルを最先端の多視点拡散手法に統合することで実現した。
提案するフレームワークは, 完全3次元一貫性, アニマタブル, フォトリアリスティックな人間のアバターの作成を可能にする最初の拡散モデルである。
論文 参考訳(メタデータ) (2024-01-09T18:59:04Z) - WildFusion: Learning 3D-Aware Latent Diffusion Models in View Space [77.92350895927922]
潜在拡散モデル(LDM)に基づく3次元画像合成の新しいアプローチであるWildFusionを提案する。
我々の3D対応LCMは、マルチビュー画像や3D幾何学を直接監督することなく訓練されている。
これにより、スケーラブルな3D認識画像合成と、Wild画像データから3Dコンテンツを作成するための有望な研究道が開かれる。
論文 参考訳(メタデータ) (2023-11-22T18:25:51Z) - Sparse3D: Distilling Multiview-Consistent Diffusion for Object
Reconstruction from Sparse Views [47.215089338101066]
スパースビュー入力に適した新しい3D再構成手法であるスパース3Dを提案する。
提案手法は,多視点拡散モデルから頑健な先行情報を抽出し,ニューラルラディアンス場を改良する。
強力な画像拡散モデルから2Dプリエントをタップすることで、我々の統合モデルは、常に高品質な結果をもたらす。
論文 参考訳(メタデータ) (2023-08-27T11:52:00Z) - DreamSparse: Escaping from Plato's Cave with 2D Frozen Diffusion Model
Given Sparse Views [20.685453627120832]
既存の手法では、品質の高い結果を生成するのに苦労したり、オブジェクトごとの最適化が必要な場合が少なくない。
DreamSparseは、オブジェクトレベルの画像とシーンレベルの画像の両方に対して高品質なノベルビューを合成することができる。
論文 参考訳(メタデータ) (2023-06-06T05:26:26Z) - SparseFusion: Distilling View-conditioned Diffusion for 3D
Reconstruction [26.165314261806603]
ニューラルレンダリングと確率的画像生成の最近の進歩を統一したスパースビュー3次元再構成手法であるスパースフュージョンを提案する。
既存のアプローチは、通常、再プロジェクションされた機能を持つニューラルレンダリングの上に構築されるが、目に見えない領域を生成したり、大きな視点の変化の下で不確実性に対処できない。
論文 参考訳(メタデータ) (2022-12-01T18:59:55Z) - 3DDesigner: Towards Photorealistic 3D Object Generation and Editing with
Text-guided Diffusion Models [71.25937799010407]
テキスト誘導拡散モデルを用いて3次元連続生成を実現する。
本研究では3次元局所編集について検討し,2段階の解法を提案する。
モデルを拡張してワンショットのノベルビュー合成を行う。
論文 参考訳(メタデータ) (2022-11-25T13:50:00Z) - Novel View Synthesis with Diffusion Models [56.55571338854636]
本稿では,3Dノベルビュー合成のための拡散モデルである3DiMを提案する。
単一のインプットビューを多くのビューで一貫したシャープな補完に変換することができる。
3DiMは、条件付けと呼ばれる新しい技術を使って、3D一貫性のある複数のビューを生成することができる。
論文 参考訳(メタデータ) (2022-10-06T16:59:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。