論文の概要: Morphable Diffusion: 3D-Consistent Diffusion for Single-image Avatar Creation
- arxiv url: http://arxiv.org/abs/2401.04728v2
- Date: Tue, 2 Apr 2024 08:29:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 09:10:18.596539
- Title: Morphable Diffusion: 3D-Consistent Diffusion for Single-image Avatar Creation
- Title(参考訳): Morphable Diffusion: 単一画像アバター作成のための3次元連続拡散
- Authors: Xiyi Chen, Marko Mihajlovic, Shaofei Wang, Sergey Prokudin, Siyu Tang,
- Abstract要約: 我々は、制御可能な光リアルな人間のアバターを作成するために、生成拡散モデルの品質と機能を高めることを目的としている。
我々は,3次元形態素モデルを最先端の多視点拡散手法に統合することで実現した。
提案するフレームワークは, 完全3次元一貫性, アニマタブル, フォトリアリスティックな人間のアバターの作成を可能にする最初の拡散モデルである。
- 参考スコア(独自算出の注目度): 14.064983137553353
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Recent advances in generative diffusion models have enabled the previously unfeasible capability of generating 3D assets from a single input image or a text prompt. In this work, we aim to enhance the quality and functionality of these models for the task of creating controllable, photorealistic human avatars. We achieve this by integrating a 3D morphable model into the state-of-the-art multi-view-consistent diffusion approach. We demonstrate that accurate conditioning of a generative pipeline on the articulated 3D model enhances the baseline model performance on the task of novel view synthesis from a single image. More importantly, this integration facilitates a seamless and accurate incorporation of facial expression and body pose control into the generation process. To the best of our knowledge, our proposed framework is the first diffusion model to enable the creation of fully 3D-consistent, animatable, and photorealistic human avatars from a single image of an unseen subject; extensive quantitative and qualitative evaluations demonstrate the advantages of our approach over existing state-of-the-art avatar creation models on both novel view and novel expression synthesis tasks. The code for our project is publicly available.
- Abstract(参考訳): 生成拡散モデルの最近の進歩により、単一の入力画像やテキストプロンプトから3Dアセットを生成するという従来不可能な能力が実現された。
本研究では,制御可能なフォトリアリスティックな人間のアバターを作成するために,これらのモデルの品質と機能を向上させることを目的としている。
我々は,3次元形態素モデルを最先端の多視点拡散手法に統合することで実現した。
合成した3次元モデル上での生成パイプラインの正確な条件付けは、単一の画像から新しいビュー合成を行うタスクにおけるベースラインモデルの性能を向上させることを実証する。
さらに重要なのは、この統合によって、顔の表情と身体のポーズ制御をシームレスかつ正確に生成プロセスに組み込むことができることだ。
我々の知識を最大限に活用するために,本提案フレームワークは,未確認対象の単一画像から完全3次元一貫性,アニマタブル,フォトリアリスティックな人間のアバターを作成するための,最初の拡散モデルである。
私たちのプロジェクトのコードは公開されています。
関連論文リスト
- Human 3Diffusion: Realistic Avatar Creation via Explicit 3D Consistent Diffusion Models [29.73743772971411]
人間の3次元拡散: 明示的な3次元連続拡散による現実的なアバター創造を提案する。
我々の重要な洞察は、2次元多視点拡散と3次元再構成モデルが相互に補完情報を提供するということである。
提案するフレームワークは,最先端の手法より優れ,単一のRGB画像から現実的なアバターを作成することができる。
論文 参考訳(メタデータ) (2024-06-12T17:57:25Z) - CAD: Photorealistic 3D Generation via Adversarial Distillation [28.07049413820128]
本稿では,事前学習した拡散モデルを用いた3次元合成のための新しい学習パラダイムを提案する。
提案手法は,1つの画像に条件付された高忠実かつ光リアルな3Dコンテンツの生成を解放し,プロンプトを行う。
論文 参考訳(メタデータ) (2023-12-11T18:59:58Z) - HAvatar: High-fidelity Head Avatar via Facial Model Conditioned Neural
Radiance Field [44.848368616444446]
我々は,NeRFの表現性とパラメトリックテンプレートからの事前情報を統合する,新しいハイブリッド・明示的3次元表現,顔モデル条件付きニューラルラジアンス場を導入する。
画像から画像への変換ネットワークを用いた全体的なGANアーキテクチャを採用することにより,動的頭部外観の高分解能,現実的,かつ一貫した合成を実現する。
論文 参考訳(メタデータ) (2023-09-29T10:45:22Z) - Guide3D: Create 3D Avatars from Text and Image Guidance [55.71306021041785]
Guide3Dは拡散モデルに基づく3Dアバター生成のためのテキスト・画像誘導生成モデルである。
我々のフレームワークは、トポロジカルかつ構造的に正しい幾何と高分解能なテクスチャを生成する。
論文 参考訳(メタデータ) (2023-08-18T17:55:47Z) - StyleAvatar3D: Leveraging Image-Text Diffusion Models for High-Fidelity
3D Avatar Generation [103.88928334431786]
高品質な3Dアバターを製作するための新しい手法を提案する。
データ生成には事前学習した画像テキスト拡散モデルとGANベースの3次元生成ネットワークを用いて訓練を行う。
提案手法は、生産されたアバターの視覚的品質と多様性の観点から、現在の最先端手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2023-05-30T13:09:21Z) - Generative Novel View Synthesis with 3D-Aware Diffusion Models [96.78397108732233]
単一入力画像から3D対応の新規ビュー合成のための拡散モデルを提案する。
提案手法は既存の2次元拡散バックボーンを利用するが,重要な点として,幾何学的先行を3次元特徴体積の形で組み込む。
新たなビュー生成に加えて,本手法は3次元一貫性シーケンスを自己回帰的に合成する機能を備えている。
論文 参考訳(メタデータ) (2023-04-05T17:15:47Z) - DreamAvatar: Text-and-Shape Guided 3D Human Avatar Generation via
Diffusion Models [55.71306021041785]
高品質な3Dアバターを作成するためのテキスト・アンド・シェイプ・ガイドフレームワークであるDreamAvatarについて紹介する。
SMPLモデルを利用して、生成のための形状とポーズのガイダンスを提供する。
また、全体とズームインした3Dヘッドから計算した損失を共同で最適化し、一般的なマルチフェイス「Janus」問題を緩和する。
論文 参考訳(メタデータ) (2023-04-03T12:11:51Z) - SDFusion: Multimodal 3D Shape Completion, Reconstruction, and Generation [89.47132156950194]
本稿では,アマチュアユーザのための3Dアセット生成を簡易化する新しいフレームワークを提案する。
提案手法は,人間によって容易に提供可能な様々な入力モダリティをサポートする。
私たちのモデルは、これらのタスクをひとつのSwiss-army-knifeツールにまとめることができます。
論文 参考訳(メタデータ) (2022-12-08T18:59:05Z) - Novel View Synthesis with Diffusion Models [56.55571338854636]
本稿では,3Dノベルビュー合成のための拡散モデルである3DiMを提案する。
単一のインプットビューを多くのビューで一貫したシャープな補完に変換することができる。
3DiMは、条件付けと呼ばれる新しい技術を使って、3D一貫性のある複数のビューを生成することができる。
論文 参考訳(メタデータ) (2022-10-06T16:59:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。