論文の概要: Agnostic proper learning of monotone functions: beyond the black-box
correction barrier
- arxiv url: http://arxiv.org/abs/2304.02700v3
- Date: Wed, 24 May 2023 16:47:32 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-26 01:35:32.356773
- Title: Agnostic proper learning of monotone functions: beyond the black-box
correction barrier
- Title(参考訳): 単調関数の固有学習--ブラックボックス補正障壁を越えて
- Authors: Jane Lange and Arsen Vasilyan
- Abstract要約: 2tildeO(sqrtn/varepsilon)$ 未知関数 $f:pm 1n rightarrow pm 1$ の一様ランダムな例を与えられたとき、我々のアルゴリズムは仮説 $g:pm 1n rightarrow pm 1$ を出力する。
また,2tildeO(sqrt)の実行時間を用いて,未知関数$f$からモノトンへの距離を加算誤差$varepsilon$まで推定するアルゴリズムも提供する。
- 参考スコア(独自算出の注目度): 6.47243430672461
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We give the first agnostic, efficient, proper learning algorithm for monotone
Boolean functions. Given $2^{\tilde{O}(\sqrt{n}/\varepsilon)}$ uniformly random
examples of an unknown function $f:\{\pm 1\}^n \rightarrow \{\pm 1\}$, our
algorithm outputs a hypothesis $g:\{\pm 1\}^n \rightarrow \{\pm 1\}$ that is
monotone and $(\mathrm{opt} + \varepsilon)$-close to $f$, where $\mathrm{opt}$
is the distance from $f$ to the closest monotone function. The running time of
the algorithm (and consequently the size and evaluation time of the hypothesis)
is also $2^{\tilde{O}(\sqrt{n}/\varepsilon)}$, nearly matching the lower bound
of Blais et al (RANDOM '15). We also give an algorithm for estimating up to
additive error $\varepsilon$ the distance of an unknown function $f$ to
monotone using a run-time of $2^{\tilde{O}(\sqrt{n}/\varepsilon)}$. Previously,
for both of these problems, sample-efficient algorithms were known, but these
algorithms were not run-time efficient. Our work thus closes this gap in our
knowledge between the run-time and sample complexity.
This work builds upon the improper learning algorithm of Bshouty and Tamon
(JACM '96) and the proper semiagnostic learning algorithm of Lange, Rubinfeld,
and Vasilyan (FOCS '22), which obtains a non-monotone Boolean-valued
hypothesis, then ``corrects'' it to monotone using query-efficient local
computation algorithms on graphs. This black-box correction approach can
achieve no error better than $2\mathrm{opt} + \varepsilon$
information-theoretically; we bypass this barrier by
a) augmenting the improper learner with a convex optimization step, and
b) learning and correcting a real-valued function before rounding its values
to Boolean.
Our real-valued correction algorithm solves the ``poset sorting'' problem of
[LRV22] for functions over general posets with non-Boolean labels.
- Abstract(参考訳): 単調ブール関数に対する最初の非依存的,効率的,適切な学習アルゴリズムを提案する。
2^{\tilde{o}(\sqrt{n}/\varepsilon)}$ 未知の関数 $f:\{\pm 1\}^n \rightarrow \{\pm 1\}$ の一様ランダムな例を与えると、アルゴリズムは仮説 $g:\{\pm 1\}^n \rightarrow \{\pm 1\}$ を単調で$(\mathrm{opt} + \varepsilon)$-close to $f$ として出力する。
The running time of the algorithm (and consequently the size and evaluation time of the hypothesis) is also $2^{\tilde{O}(\sqrt{n}/\varepsilon)}$, nearly matching the lower bound of Blais et al (RANDOM '15). We also give an algorithm for estimating up to additive error $\varepsilon$ the distance of an unknown function $f$ to monotone using a run-time of $2^{\tilde{O}(\sqrt{n}/\varepsilon)}$. Previously, for both of these problems, sample-efficient algorithms were known, but these algorithms were not run-time efficient. Our work thus closes this gap in our knowledge between the run-time and sample complexity. This work builds upon the improper learning algorithm of Bshouty and Tamon (JACM '96) and the proper semiagnostic learning algorithm of Lange, Rubinfeld, and Vasilyan (FOCS '22), which obtains a non-monotone Boolean-valued hypothesis, then ``corrects'' it to monotone using query-efficient local computation algorithms on graphs.
このブラックボックス補正アプローチは、2\mathrm{opt} + \varepsilon$ information-theoretically 以上の誤差を達成でき、この障壁をバイパスする。
a)不適切な学習者を凸最適化ステップで増強し、
b) 値がブールに丸まる前に実値関数を学習し、修正すること。
実数値補正アルゴリズムは,非ボアラベルを持つ一般ポセット上の関数 [lrv22] の ``poset sorting''' 問題を解く。
関連論文リスト
- A Competitive Algorithm for Agnostic Active Learning [5.4579367210379335]
アクティブな学習のための最も一般的なアルゴリズムは、不一致係数と呼ばれるパラメータでその性能を表現する。
我々は、任意の二進仮説クラス$H$と分布$D_X$ over$X$に対して最適なアルゴリズムと競合するアルゴリズムを得る。
我々のアルゴリズムの$O(log |H|)$オーバーヘッドよりは、NPハードである。
論文 参考訳(メタデータ) (2023-10-28T19:01:16Z) - Adaptive approximation of monotone functions [0.0]
GreedyBox が任意の関数 $f$ に対して,対数因子まで,最適なサンプル複雑性を実現することを証明した。
おそらく予想通り、GreedyBoxの$Lp(mu)$エラーは、アルゴリズムによって予測されるよりもはるかに高速な$C2$関数で減少する。
論文 参考訳(メタデータ) (2023-09-14T08:56:31Z) - Efficiently Learning One-Hidden-Layer ReLU Networks via Schur
Polynomials [50.90125395570797]
正方形損失に関して、標準的なガウス分布の下での$k$ReLU活性化の線形結合をPAC学習する問題をmathbbRd$で検討する。
本研究の主な成果は,この学習課題に対して,サンプルおよび計算複雑性が$(dk/epsilon)O(k)$で,epsilon>0$が目標精度である。
論文 参考訳(メタデータ) (2023-07-24T14:37:22Z) - Near-Optimal Bounds for Learning Gaussian Halfspaces with Random
Classification Noise [50.64137465792738]
この問題に対する効率的なSQアルゴリズムは、少なくとも$Omega(d1/2/(maxp, epsilon)2)$. のサンプル複雑性を必要とする。
我々の下限は、この1/epsilon$に対する二次的依存は、効率的なアルゴリズムに固有のものであることを示唆している。
論文 参考訳(メタデータ) (2023-07-13T18:59:28Z) - Fast $(1+\varepsilon)$-Approximation Algorithms for Binary Matrix
Factorization [54.29685789885059]
本稿では, 2次行列分解(BMF)問題に対する効率的な$(1+varepsilon)$-approximationアルゴリズムを提案する。
目標は、低ランク因子の積として$mathbfA$を近似することである。
我々の手法はBMF問題の他の一般的な変種に一般化する。
論文 参考訳(メタデータ) (2023-06-02T18:55:27Z) - Randomized Block-Coordinate Optimistic Gradient Algorithms for
Root-Finding Problems [8.0153031008486]
大規模設定における非線形方程式の解を近似する2つの新しいアルゴリズムを開発した。
我々は,機械学習における顕著な応用を網羅する大規模有限サム包含のクラスに,本手法を適用した。
論文 参考訳(メタデータ) (2023-01-08T21:46:27Z) - Sketching Algorithms and Lower Bounds for Ridge Regression [65.0720777731368]
リッジ回帰問題に対する1+varepsilon$近似解を計算するスケッチベース反復アルゴリズムを提案する。
また,このアルゴリズムがカーネルリッジ回帰の高速化に有効であることを示す。
論文 参考訳(メタデータ) (2022-04-13T22:18:47Z) - Logarithmic Regret from Sublinear Hints [76.87432703516942]
自然クエリモデルにより,アルゴリズムが$O(log T)$ regretsを$O(sqrtT)$ hintsで得ることを示す。
また、$o(sqrtT)$ hintsは$Omega(sqrtT)$ regretより保証できないことも示しています。
論文 参考訳(メタデータ) (2021-11-09T16:50:18Z) - Streaming Complexity of SVMs [110.63976030971106]
本稿では,ストリーミングモデルにおけるバイアス正規化SVM問題を解く際の空間複雑性について検討する。
両方の問題に対して、$frac1lambdaepsilon$の次元に対して、$frac1lambdaepsilon$よりも空間的に小さいストリーミングアルゴリズムを得ることができることを示す。
論文 参考訳(メタデータ) (2020-07-07T17:10:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。