Deep Long-Short Term Memory networks: Stability properties and
Experimental validation
- URL: http://arxiv.org/abs/2304.02975v1
- Date: Thu, 6 Apr 2023 10:02:17 GMT
- Title: Deep Long-Short Term Memory networks: Stability properties and
Experimental validation
- Authors: Fabio Bonassi, Alessio La Bella, Giulio Panzani, Marcello Farina,
Riccardo Scattolini
- Abstract summary: We show that suitable sufficient conditions on the weights of the network can be leveraged to setup a training procedure able to learn provenly-$delta$ISS LSTM models from data.
The proposed approach is tested on a real brake-by-wire apparatus to identify a model of the system from input-output experimentally collected data.
- Score: 0.20999222360659603
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The aim of this work is to investigate the use of Incrementally
Input-to-State Stable ($\delta$ISS) deep Long Short Term Memory networks
(LSTMs) for the identification of nonlinear dynamical systems. We show that
suitable sufficient conditions on the weights of the network can be leveraged
to setup a training procedure able to learn provenly-$\delta$ISS LSTM models
from data. The proposed approach is tested on a real brake-by-wire apparatus to
identify a model of the system from input-output experimentally collected data.
Results show satisfactory modeling performances.
Related papers
- Sparse identification of nonlinear dynamics and Koopman operators with Shallow Recurrent Decoder Networks [3.1484174280822845]
We present a method to jointly solve the sensing and model identification problems with simple implementation, efficient, and robust performance.
SINDy-SHRED uses Gated Recurrent Units to model sparse sensor measurements along with a shallow network decoder to reconstruct the full-temporal field from the latent state space.
We conduct systematic experimental studies on PDE data such as turbulent flows, real-world sensor measurements for sea surface temperature, and direct video data.
arXiv Detail & Related papers (2025-01-23T02:18:13Z) - Path-minimizing Latent ODEs for improved extrapolation and inference [0.0]
Latent ODE models provide flexible descriptions of dynamic systems, but they can struggle with extrapolation and predicting complicated non-linear dynamics.
In this paper we exploit this dichotomy by encouraging time-independent latent representations.
By replacing the common variational penalty in latent space with an $ell$ penalty on the path length of each system, the models learn data representations that can easily be distinguished from those of systems with different configurations.
This results in faster training, smaller models, more accurate and long-time extrapolation compared to the baseline ODE models with GRU, RNN, and LSTM/decoders on tests with
arXiv Detail & Related papers (2024-10-11T15:50:01Z) - Bridging the Sim-to-Real Gap with Bayesian Inference [53.61496586090384]
We present SIM-FSVGD for learning robot dynamics from data.
We use low-fidelity physical priors to regularize the training of neural network models.
We demonstrate the effectiveness of SIM-FSVGD in bridging the sim-to-real gap on a high-performance RC racecar system.
arXiv Detail & Related papers (2024-03-25T11:29:32Z) - Physics-Informed Machine Learning for Seismic Response Prediction OF Nonlinear Steel Moment Resisting Frame Structures [6.483318568088176]
PiML method integrates scientific principles and physical laws into deep neural networks to model seismic responses of nonlinear structures.
Manipulating the equation of motion helps learn system nonlinearities and confines solutions within physically interpretable results.
Result handles complex data better than existing physics-guided LSTM models and outperforms other non-physics data-driven networks.
arXiv Detail & Related papers (2024-02-28T02:16:03Z) - Deep Learning-Based Cyber-Attack Detection Model for Smart Grids [6.642400003243118]
A novel artificial intelligence-based cyber-attack detection model is developed to stop data integrity cyber-attacks (DIAs) on the received load data by supervisory control and data acquisition (SCADA)
In the proposed model, first the load data is forecasted using a regression model and after processing stage, the processed data is clustered using the unsupervised learning method.
The proposed EE-BiLSTM method can perform more robust and accurate compared to the other two methods.
arXiv Detail & Related papers (2023-12-14T10:54:04Z) - B-LSTM-MIONet: Bayesian LSTM-based Neural Operators for Learning the
Response of Complex Dynamical Systems to Length-Variant Multiple Input
Functions [6.75867828529733]
Multiple-input deep neural operators (MIONet) extended DeepONet to allow multiple input functions in different Banach spaces.
MIONet offers flexibility in training dataset grid spacing, without constraints on output location.
This work redesigns MIONet, integrating Long Short Term Memory (LSTM) to learn neural operators from time-dependent data.
arXiv Detail & Related papers (2023-11-28T04:58:17Z) - Value function estimation using conditional diffusion models for control [62.27184818047923]
We propose a simple algorithm called Diffused Value Function (DVF)
It learns a joint multi-step model of the environment-robot interaction dynamics using a diffusion model.
We show how DVF can be used to efficiently capture the state visitation measure for multiple controllers.
arXiv Detail & Related papers (2023-06-09T18:40:55Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Hybridization of Capsule and LSTM Networks for unsupervised anomaly
detection on multivariate data [0.0]
This paper introduces a novel NN architecture which hybridises the Long-Short-Term-Memory (LSTM) and Capsule Networks into a single network.
The proposed method uses an unsupervised learning technique to overcome the issues with finding large volumes of labelled training data.
arXiv Detail & Related papers (2022-02-11T10:33:53Z) - Learning Mixtures of Linear Dynamical Systems [94.49754087817931]
We develop a two-stage meta-algorithm to efficiently recover each ground-truth LDS model up to error $tildeO(sqrtd/T)$.
We validate our theoretical studies with numerical experiments, confirming the efficacy of the proposed algorithm.
arXiv Detail & Related papers (2022-01-26T22:26:01Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
We consider the impact of the training set and its structure on the quality of the long-term prediction.
We show how an informed design of the training set, based on invariants of the system and the structure of the underlying attractor, significantly improves the resulting models.
arXiv Detail & Related papers (2021-12-15T20:09:20Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
We propose a method for training a deterministic deep model that can find and reject out of distribution data points at test time with a single forward pass.
We scale training in these with a novel loss function and centroid updating scheme and match the accuracy of softmax models.
arXiv Detail & Related papers (2020-03-04T12:27:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.