Path-minimizing Latent ODEs for improved extrapolation and inference
- URL: http://arxiv.org/abs/2410.08923v1
- Date: Fri, 11 Oct 2024 15:50:01 GMT
- Title: Path-minimizing Latent ODEs for improved extrapolation and inference
- Authors: Matt L. Sampson, Peter Melchior,
- Abstract summary: Latent ODE models provide flexible descriptions of dynamic systems, but they can struggle with extrapolation and predicting complicated non-linear dynamics.
In this paper we exploit this dichotomy by encouraging time-independent latent representations.
By replacing the common variational penalty in latent space with an $ell$ penalty on the path length of each system, the models learn data representations that can easily be distinguished from those of systems with different configurations.
This results in faster training, smaller models, more accurate and long-time extrapolation compared to the baseline ODE models with GRU, RNN, and LSTM/decoders on tests with
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Latent ODE models provide flexible descriptions of dynamic systems, but they can struggle with extrapolation and predicting complicated non-linear dynamics. The latent ODE approach implicitly relies on encoders to identify unknown system parameters and initial conditions, whereas the evaluation times are known and directly provided to the ODE solver. This dichotomy can be exploited by encouraging time-independent latent representations. By replacing the common variational penalty in latent space with an $\ell_2$ penalty on the path length of each system, the models learn data representations that can easily be distinguished from those of systems with different configurations. This results in faster training, smaller models, more accurate interpolation and long-time extrapolation compared to the baseline ODE models with GRU, RNN, and LSTM encoder/decoders on tests with damped harmonic oscillator, self-gravitating fluid, and predator-prey systems. We also demonstrate superior results for simulation-based inference of the Lotka-Volterra parameters and initial conditions by using the latents as data summaries for a conditional normalizing flow. Our change to the training loss is agnostic to the specific recognition network used by the decoder and can therefore easily be adopted by other latent ODE models.
Related papers
- Balanced Neural ODEs: nonlinear model order reduction and Koopman operator approximations [0.0]
Variational Autoencoders (VAEs) are a powerful framework for learning compact latent representations.
NeuralODEs excel in learning transient system dynamics.
This work combines the strengths of both to create fast surrogate models with adjustable complexity.
arXiv Detail & Related papers (2024-10-14T05:45:52Z) - Learning Chaotic Systems and Long-Term Predictions with Neural Jump ODEs [4.204990010424083]
Pathdependent Neural Jump ODE (PDNJ-ODE) is a model for online prediction of generic processes with irregular (in time) and potentially incomplete (with respect to coordinates) observations.
In this work we enhance the model with two novel ideas, which independently of each other improve the performance of our modelling setup.
The same enhancements can be used to provably enable the PDNJ-ODE to learn long-term predictions for general datasets, where the standard model fails.
arXiv Detail & Related papers (2024-07-26T15:18:29Z) - On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
Diffusion-based generative models use differential equations to establish a smooth connection between a complex data distribution and a tractable prior distribution.
In this paper, we identify several intriguing trajectory properties in the ODE-based sampling process of diffusion models.
arXiv Detail & Related papers (2024-05-18T15:59:41Z) - Foundational Inference Models for Dynamical Systems [5.549794481031468]
We offer a fresh perspective on the classical problem of imputing missing time series data, whose underlying dynamics are assumed to be determined by ODEs.
We propose a novel supervised learning framework for zero-shot time series imputation, through parametric functions satisfying some (hidden) ODEs.
We empirically demonstrate that one and the same (pretrained) recognition model can perform zero-shot imputation across 63 distinct time series with missing values.
arXiv Detail & Related papers (2024-02-12T11:48:54Z) - InVAErt networks: a data-driven framework for model synthesis and
identifiability analysis [0.0]
inVAErt is a framework for data-driven analysis and synthesis of physical systems.
It uses a deterministic decoder to represent the forward and inverse maps, a normalizing flow to capture the probabilistic distribution of system outputs, and a variational encoder to learn a compact latent representation for the lack of bijectivity between inputs and outputs.
arXiv Detail & Related papers (2023-07-24T07:58:18Z) - Reflected Diffusion Models [93.26107023470979]
We present Reflected Diffusion Models, which reverse a reflected differential equation evolving on the support of the data.
Our approach learns the score function through a generalized score matching loss and extends key components of standard diffusion models.
arXiv Detail & Related papers (2023-04-10T17:54:38Z) - Discovering ordinary differential equations that govern time-series [65.07437364102931]
We propose a transformer-based sequence-to-sequence model that recovers scalar autonomous ordinary differential equations (ODEs) in symbolic form from time-series data of a single observed solution of the ODE.
Our method is efficiently scalable: after one-time pretraining on a large set of ODEs, we can infer the governing laws of a new observed solution in a few forward passes of the model.
arXiv Detail & Related papers (2022-11-05T07:07:58Z) - Learning and Inference in Sparse Coding Models with Langevin Dynamics [3.0600309122672726]
We describe a system capable of inference and learning in a probabilistic latent variable model.
We demonstrate this idea for a sparse coding model by deriving a continuous-time equation for inferring its latent variables via Langevin dynamics.
We show that Langevin dynamics lead to an efficient procedure for sampling from the posterior distribution in the 'L0 sparse' regime, where latent variables are encouraged to be set to zero as opposed to having a small L1 norm.
arXiv Detail & Related papers (2022-04-23T23:16:47Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - Neural ODE Processes [64.10282200111983]
We introduce Neural ODE Processes (NDPs), a new class of processes determined by a distribution over Neural ODEs.
We show that our model can successfully capture the dynamics of low-dimensional systems from just a few data-points.
arXiv Detail & Related papers (2021-03-23T09:32:06Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
We present a Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) model for robust estimation and anomaly detection of time series.
Our model parameterizes mean and variance for each time-stamp with flexible neural networks.
We show the effectiveness of our model on both synthetic datasets and public real-world benchmarks.
arXiv Detail & Related papers (2021-02-02T06:15:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.