Deep Learning-Based Cyber-Attack Detection Model for Smart Grids
- URL: http://arxiv.org/abs/2312.08810v1
- Date: Thu, 14 Dec 2023 10:54:04 GMT
- Title: Deep Learning-Based Cyber-Attack Detection Model for Smart Grids
- Authors: Mojtaba Mohammadi, Arshia Aflaki, Abdollah Kavousifard, Mohsen
Gitizadeh
- Abstract summary: A novel artificial intelligence-based cyber-attack detection model is developed to stop data integrity cyber-attacks (DIAs) on the received load data by supervisory control and data acquisition (SCADA)
In the proposed model, first the load data is forecasted using a regression model and after processing stage, the processed data is clustered using the unsupervised learning method.
The proposed EE-BiLSTM method can perform more robust and accurate compared to the other two methods.
- Score: 6.642400003243118
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, a novel artificial intelligence-based cyber-attack detection
model for smart grids is developed to stop data integrity cyber-attacks (DIAs)
on the received load data by supervisory control and data acquisition (SCADA).
In the proposed model, first the load data is forecasted using a regression
model and after processing stage, the processed data is clustered using the
unsupervised learning method. In this work, in order to achieve the best
performance, three load forecasting methods (i.e. extra tree regression (ETR),
long short-term memory (LSTM) and bidirectional long short-term memory
(BiLSTM)) are utilized as regression models and their performance is compared.
For clustering and outlying detection, the covariance elliptic envelope (EE) is
employed as an unsupervised learning method. To examine the proposed model, the
hourly load data of the power company of the city of Johor in Malaysia is
employed and Two common DIAs, which are DIAs targeting economic loss and DIAs
targeting blackouts, are used to evaluate the accuracy of detection methods in
several scenarios. The simulation results show that the proposed EE-BiLSTM
method can perform more robust and accurate compared to the other two methods.
Related papers
- Data-driven Bayesian State Estimation with Compressed Measurement of Model-free Process using Semi-supervised Learning [57.04370580292727]
The research topic is: data-driven Bayesian state estimation with compressed measurement (BSCM) of model-free process.
The dimension of the temporal measurement vector is lower than the dimension of the temporal state vector to be estimated.
Two existing unsupervised learning-based data-driven methods fail to address the BSCM problem for model-free process.
We develop a semi-supervised learning-based DANSE method, referred to as SemiDANSE.
arXiv Detail & Related papers (2024-07-10T05:03:48Z) - Extracting Training Data from Unconditional Diffusion Models [76.85077961718875]
diffusion probabilistic models (DPMs) are being employed as mainstream models for generative artificial intelligence (AI)
We aim to establish a theoretical understanding of memorization in DPMs with 1) a memorization metric for theoretical analysis, 2) an analysis of conditional memorization with informative and random labels, and 3) two better evaluation metrics for measuring memorization.
Based on the theoretical analysis, we propose a novel data extraction method called textbfSurrogate condItional Data Extraction (SIDE) that leverages a trained on generated data as a surrogate condition to extract training data directly from unconditional diffusion models.
arXiv Detail & Related papers (2024-06-18T16:20:12Z) - Few-Shot Load Forecasting Under Data Scarcity in Smart Grids: A Meta-Learning Approach [0.18641315013048293]
This paper proposes adapting an established model-agnostic meta-learning algorithm for short-term load forecasting.
The proposed method can rapidly adapt and generalize within any unknown load time series of arbitrary length.
The proposed model is evaluated using a dataset of historical load consumption data from real-world consumers.
arXiv Detail & Related papers (2024-06-09T18:59:08Z) - MisGUIDE : Defense Against Data-Free Deep Learning Model Extraction [0.8437187555622164]
"MisGUIDE" is a two-step defense framework for Deep Learning models that disrupts the adversarial sample generation process.
The aim of the proposed defense method is to reduce the accuracy of the cloned model while maintaining accuracy on authentic queries.
arXiv Detail & Related papers (2024-03-27T13:59:21Z) - Diffusion-Model-Assisted Supervised Learning of Generative Models for
Density Estimation [10.793646707711442]
We present a framework for training generative models for density estimation.
We use the score-based diffusion model to generate labeled data.
Once the labeled data are generated, we can train a simple fully connected neural network to learn the generative model in the supervised manner.
arXiv Detail & Related papers (2023-10-22T23:56:19Z) - Anomaly Detection with Ensemble of Encoder and Decoder [2.8199078343161266]
Anomaly detection in power grids aims to detect and discriminate anomalies caused by cyber attacks against the power system.
We propose a novel anomaly detection method by modeling the data distribution of normal samples via multiple encoders and decoders.
Experiment results on network intrusion and power system datasets demonstrate the effectiveness of our proposed method.
arXiv Detail & Related papers (2023-03-11T15:49:29Z) - IDM-Follower: A Model-Informed Deep Learning Method for Long-Sequence
Car-Following Trajectory Prediction [24.94160059351764]
Most car-following models are generative and only consider the inputs of the speed, position, and acceleration of the last time step.
We implement a novel structure with two independent encoders and a self-attention decoder that could sequentially predict the following trajectories.
Numerical experiments with multiple settings on simulation and NGSIM datasets show that the IDM-Follower can improve the prediction performance.
arXiv Detail & Related papers (2022-10-20T02:24:27Z) - Real-to-Sim: Predicting Residual Errors of Robotic Systems with Sparse
Data using a Learning-based Unscented Kalman Filter [65.93205328894608]
We learn the residual errors between a dynamic and/or simulator model and the real robot.
We show that with the learned residual errors, we can further close the reality gap between dynamic models, simulations, and actual hardware.
arXiv Detail & Related papers (2022-09-07T15:15:12Z) - Momentum Pseudo-Labeling for Semi-Supervised Speech Recognition [55.362258027878966]
We present momentum pseudo-labeling (MPL) as a simple yet effective strategy for semi-supervised speech recognition.
MPL consists of a pair of online and offline models that interact and learn from each other, inspired by the mean teacher method.
The experimental results demonstrate that MPL effectively improves over the base model and is scalable to different semi-supervised scenarios.
arXiv Detail & Related papers (2021-06-16T16:24:55Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
Threat detection of weapons and aggressive behavior from live video can be used for rapid detection and prevention of potentially deadly incidents.
One way for achieving this is through the use of artificial intelligence and, in particular, machine learning for image analysis.
We compare a traditional monolithic end-to-end deep learning model and a previously proposed model based on an ensemble of simpler neural networks detecting fire-weapons via semantic segmentation.
arXiv Detail & Related papers (2020-12-17T15:19:29Z) - Probing Model Signal-Awareness via Prediction-Preserving Input
Minimization [67.62847721118142]
We evaluate models' ability to capture the correct vulnerability signals to produce their predictions.
We measure the signal awareness of models using a new metric we propose- Signal-aware Recall (SAR)
The results show a sharp drop in the model's Recall from the high 90s to sub-60s with the new metric.
arXiv Detail & Related papers (2020-11-25T20:05:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.