ChatGPT for Shaping the Future of Dentistry: The Potential of
Multi-Modal Large Language Model
- URL: http://arxiv.org/abs/2304.03086v2
- Date: Mon, 31 Jul 2023 06:08:17 GMT
- Title: ChatGPT for Shaping the Future of Dentistry: The Potential of
Multi-Modal Large Language Model
- Authors: Hanyao Huang, Ou Zheng, Dongdong Wang, Jiayi Yin, Zijin Wang,
Shengxuan Ding, Heng Yin, Chuan Xu, Renjie Yang, Qian Zheng, Bing Shi
- Abstract summary: ChatGPT is a lite and conversational variant of Generative Pretrained Transformer 4 (GPT-4) developed by OpenAI.
This paper mainly discusses the future applications of Large Language Models (LLMs) in dentistry.
- Score: 18.59603757924943
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The ChatGPT, a lite and conversational variant of Generative Pretrained
Transformer 4 (GPT-4) developed by OpenAI, is one of the milestone Large
Language Models (LLMs) with billions of parameters. LLMs have stirred up much
interest among researchers and practitioners in their impressive skills in
natural language processing tasks, which profoundly impact various fields. This
paper mainly discusses the future applications of LLMs in dentistry. We
introduce two primary LLM deployment methods in dentistry, including automated
dental diagnosis and cross-modal dental diagnosis, and examine their potential
applications. Especially, equipped with a cross-modal encoder, a single LLM can
manage multi-source data and conduct advanced natural language reasoning to
perform complex clinical operations. We also present cases to demonstrate the
potential of a fully automatic Multi-Modal LLM AI system for dentistry clinical
application. While LLMs offer significant potential benefits, the challenges,
such as data privacy, data quality, and model bias, need further study.
Overall, LLMs have the potential to revolutionize dental diagnosis and
treatment, which indicates a promising avenue for clinical application and
research in dentistry.
Related papers
- Demystifying Large Language Models for Medicine: A Primer [50.83806796466396]
Large language models (LLMs) represent a transformative class of AI tools capable of revolutionizing various aspects of healthcare.
This tutorial aims to equip healthcare professionals with the tools necessary to effectively integrate LLMs into clinical practice.
arXiv Detail & Related papers (2024-10-24T15:41:56Z) - From Text to Multimodality: Exploring the Evolution and Impact of Large Language Models in Medical Practice [12.390859712280328]
Large Language Models (LLMs) have rapidly evolved from text-based systems to multimodal platforms.
We examine the current landscape of MLLMs in healthcare, analyzing their applications across clinical decision support, medical imaging, patient engagement, and research.
arXiv Detail & Related papers (2024-09-14T02:35:29Z) - GMAI-MMBench: A Comprehensive Multimodal Evaluation Benchmark Towards General Medical AI [67.09501109871351]
Large Vision-Language Models (LVLMs) are capable of handling diverse data types such as imaging, text, and physiological signals.
GMAI-MMBench is the most comprehensive general medical AI benchmark with well-categorized data structure and multi-perceptual granularity to date.
It is constructed from 284 datasets across 38 medical image modalities, 18 clinical-related tasks, 18 departments, and 4 perceptual granularities in a Visual Question Answering (VQA) format.
arXiv Detail & Related papers (2024-08-06T17:59:21Z) - A Survey on Large Language Models from General Purpose to Medical Applications: Datasets, Methodologies, and Evaluations [5.265452667976959]
This survey systematically summarizes how to train medical LLMs based on open-source general LLMs.
It covers (a) how to acquire training corpus and construct customized medical training sets, (b) how to choose an appropriate training paradigm, and (d) existing challenges and promising research directions.
arXiv Detail & Related papers (2024-06-14T02:42:20Z) - Transforming Dental Diagnostics with Artificial Intelligence: Advanced Integration of ChatGPT and Large Language Models for Patient Care [0.196629787330046]
This study delves into the impact of cutting-edge Large Language Models (LLMs) on medical diagnostics, with a keen focus on the dental sector.
The advent of ChatGPT-4 is poised to make substantial inroads into dental practices, especially in the realm of oral surgery.
It critically assesses the broad implications and challenges within various sectors, including academia and healthcare.
arXiv Detail & Related papers (2024-06-07T06:44:09Z) - Large Language Models in the Clinic: A Comprehensive Benchmark [63.21278434331952]
We build a benchmark ClinicBench to better understand large language models (LLMs) in the clinic.
We first collect eleven existing datasets covering diverse clinical language generation, understanding, and reasoning tasks.
We then construct six novel datasets and clinical tasks that are complex but common in real-world practice.
We conduct an extensive evaluation of twenty-two LLMs under both zero-shot and few-shot settings.
arXiv Detail & Related papers (2024-04-25T15:51:06Z) - LLM-Assisted Multi-Teacher Continual Learning for Visual Question Answering in Robotic Surgery [57.358568111574314]
Patient data privacy often restricts the availability of old data when updating the model.
Prior CL studies overlooked two vital problems in the surgical domain.
This paper proposes addressing these problems with a multimodal large language model (LLM) and an adaptive weight assignment methodology.
arXiv Detail & Related papers (2024-02-26T15:35:24Z) - Language-Specific Neurons: The Key to Multilingual Capabilities in Large Language Models [117.20416338476856]
Large language models (LLMs) demonstrate remarkable multilingual capabilities without being pre-trained on specially curated multilingual parallel corpora.
We propose a novel detection method, language activation probability entropy (LAPE), to identify language-specific neurons within LLMs.
Our findings indicate that LLMs' proficiency in processing a particular language is predominantly due to a small subset of neurons.
arXiv Detail & Related papers (2024-02-26T09:36:05Z) - Large Language Models Illuminate a Progressive Pathway to Artificial
Healthcare Assistant: A Review [16.008511195589925]
Large language models (LLMs) have shown promising capabilities in mimicking human-level language comprehension and reasoning.
This paper provides a comprehensive review on the applications and implications of LLMs in medicine.
arXiv Detail & Related papers (2023-11-03T13:51:36Z) - Redefining Digital Health Interfaces with Large Language Models [69.02059202720073]
Large Language Models (LLMs) have emerged as general-purpose models with the ability to process complex information.
We show how LLMs can provide a novel interface between clinicians and digital technologies.
We develop a new prognostic tool using automated machine learning.
arXiv Detail & Related papers (2023-10-05T14:18:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.