A Block Coordinate Descent Method for Nonsmooth Composite Optimization under Orthogonality Constraints
- URL: http://arxiv.org/abs/2304.03641v2
- Date: Tue, 12 Nov 2024 02:34:46 GMT
- Title: A Block Coordinate Descent Method for Nonsmooth Composite Optimization under Orthogonality Constraints
- Authors: Ganzhao Yuan,
- Abstract summary: Nonsmooth composite optimization with inequality constraints is crucial in statistical learning and data science.
textbfOBCD is a feasible small computational footprint method to address these challenges.
We prove that textbfOBCD converges to block$k$ stationary points, which offer stronger optimality than standard critical points.
- Score: 7.9047096855236125
- License:
- Abstract: Nonsmooth composite optimization with orthogonality constraints is crucial in statistical learning and data science, but it presents challenges due to its nonsmooth objective and computationally expensive, non-convex constraints. In this paper, we propose a new approach called \textbf{OBCD}, which leverages Block Coordinate Descent (BCD) to address these challenges. \textbf{OBCD} is a feasible method with a small computational footprint. In each iteration, it updates $k$ rows of the solution matrix, where $k \geq 2$, while globally solving a small nonsmooth optimization problem under orthogonality constraints. We prove that \textbf{OBCD} converges to block-$k$ stationary points, which offer stronger optimality than standard critical points. Notably, \textbf{OBCD} is the first greedy descent method with monotonicity for this problem class. Under the Kurdyka-Lojasiewicz (KL) inequality, we establish strong limit-point convergence. We also extend \textbf{OBCD} with breakpoint searching methods for subproblem solving and greedy strategies for working set selection. Comprehensive experiments demonstrate the superior performance of our approach across various tasks.
Related papers
- Two-Timescale Gradient Descent Ascent Algorithms for Nonconvex Minimax Optimization [77.3396841985172]
We provide a unified analysis of two-timescale gradient ascent (TTGDA) for solving structured non minimax optimization problems.
Our contribution is to design TTGDA algorithms are effective beyond the setting.
arXiv Detail & Related papers (2024-08-21T20:14:54Z) - Convergence and complexity of block majorization-minimization for constrained block-Riemannian optimization [18.425648833592312]
Blockization-minimization (BMM) is a simple iterative gradient for non-exhaustive subspace estimation.
Our analysis makes explicit use of Euclidian constraints.
arXiv Detail & Related papers (2023-12-16T05:40:19Z) - Universal Online Learning with Gradient Variations: A Multi-layer Online Ensemble Approach [57.92727189589498]
We propose an online convex optimization approach with two different levels of adaptivity.
We obtain $mathcalO(log V_T)$, $mathcalO(d log V_T)$ and $hatmathcalO(sqrtV_T)$ regret bounds for strongly convex, exp-concave and convex loss functions.
arXiv Detail & Related papers (2023-07-17T09:55:35Z) - An Oblivious Stochastic Composite Optimization Algorithm for Eigenvalue
Optimization Problems [76.2042837251496]
We introduce two oblivious mirror descent algorithms based on a complementary composite setting.
Remarkably, both algorithms work without prior knowledge of the Lipschitz constant or smoothness of the objective function.
We show how to extend our framework to scale and demonstrate the efficiency and robustness of our methods on large scale semidefinite programs.
arXiv Detail & Related papers (2023-06-30T08:34:29Z) - Decentralized Riemannian Algorithm for Nonconvex Minimax Problems [82.50374560598493]
The minimax algorithms for neural networks have been developed to solve many problems.
In this paper, we propose two types of minimax algorithms.
For the setting, we propose DRSGDA and prove that our method achieves a gradient.
arXiv Detail & Related papers (2023-02-08T01:42:45Z) - Multi-block-Single-probe Variance Reduced Estimator for Coupled
Compositional Optimization [49.58290066287418]
We propose a novel method named Multi-block-probe Variance Reduced (MSVR) to alleviate the complexity of compositional problems.
Our results improve upon prior ones in several aspects, including the order of sample complexities and dependence on strongity.
arXiv Detail & Related papers (2022-07-18T12:03:26Z) - Towards Painless Policy Optimization for Constrained MDPs [46.12526917024248]
We study policy optimization in an infinite horizon, $gamma$-discounted constrained Markov decision process (CMDP)
Our objective is to return a policy that achieves large expected reward with a small constraint violation.
We propose a generic primal-dual framework that allows us to bound the reward sub-optimality and constraint violation for arbitrary algorithms.
arXiv Detail & Related papers (2022-04-11T15:08:09Z) - Projection-Free Algorithm for Stochastic Bi-level Optimization [17.759493152879013]
This work presents the first projection-free algorithm to solve bi-level optimization problems, where the objective function depends on another optimization problem.
The proposed $textbfStochastic $textbfF$rank-$textbfW$olfe ($textbfSCFW$) is shown to achieve a sample complexity of $mathcalO(epsilon-2)$ for convex objectives.
arXiv Detail & Related papers (2021-10-22T11:49:15Z) - Safe Learning under Uncertain Objectives and Constraints [66.05180398174286]
We consider non-textitunknown yet safety-critical optimization problems under textitunknown yet safety-critical constraints.
Such problems naturally arise in a variety of domains including robotics, manufacturing, and medical procedures.
A crucial component of our analysis is to introduce and apply a technique called shrinkage in the context of safe optimization.
arXiv Detail & Related papers (2020-06-23T20:51:00Z) - Gradient-Variation Bound for Online Convex Optimization with Constraints [25.002868073267464]
We study online convex optimization with constraints consisting of multiple functional constraints and a relatively simple constraint set, such as a Euclidean ball.
First-order methods achieve an $mathcalO(sqrtT)$ regret and an $mathcalO(1)$ constraint violation, but do not take into account the structural information of the problem.
In this paper, we provide an emphinstance-dependent bound for online convex optimization with complex constraints obtained by a novel online primal-dual mirror-prox algorithm.
arXiv Detail & Related papers (2020-06-22T17:38:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.