Fairness through Aleatoric Uncertainty
- URL: http://arxiv.org/abs/2304.03646v2
- Date: Tue, 15 Aug 2023 07:09:10 GMT
- Title: Fairness through Aleatoric Uncertainty
- Authors: Anique Tahir, Lu Cheng and Huan Liu
- Abstract summary: We introduce the idea of leveraging aleatoric uncertainty (e.g., data ambiguity) to improve the fairness-utility trade-off.
Our central hypothesis is that aleatoric uncertainty is a key factor for algorithmic fairness.
We then propose a principled model to improve fairness when aleatoric uncertainty is high and improve utility elsewhere.
- Score: 18.95295731419523
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We propose a simple yet effective solution to tackle the often-competing
goals of fairness and utility in classification tasks. While fairness ensures
that the model's predictions are unbiased and do not discriminate against any
particular group or individual, utility focuses on maximizing the model's
predictive performance. This work introduces the idea of leveraging aleatoric
uncertainty (e.g., data ambiguity) to improve the fairness-utility trade-off.
Our central hypothesis is that aleatoric uncertainty is a key factor for
algorithmic fairness and samples with low aleatoric uncertainty are modeled
more accurately and fairly than those with high aleatoric uncertainty. We then
propose a principled model to improve fairness when aleatoric uncertainty is
high and improve utility elsewhere. Our approach first intervenes in the data
distribution to better decouple aleatoric uncertainty and epistemic
uncertainty. It then introduces a fairness-utility bi-objective loss defined
based on the estimated aleatoric uncertainty. Our approach is theoretically
guaranteed to improve the fairness-utility trade-off. Experimental results on
both tabular and image datasets show that the proposed approach outperforms
state-of-the-art methods w.r.t. the fairness-utility trade-off and w.r.t. both
group and individual fairness metrics. This work presents a fresh perspective
on the trade-off between utility and algorithmic fairness and opens a key
avenue for the potential of using prediction uncertainty in fair machine
learning.
Related papers
- FairlyUncertain: A Comprehensive Benchmark of Uncertainty in Algorithmic Fairness [4.14360329494344]
We introduce FairlyUncertain, an axiomatic benchmark for evaluating uncertainty estimates in fairness.
Our benchmark posits that fair predictive uncertainty estimates should be consistent across learning pipelines and calibrated to observed randomness.
arXiv Detail & Related papers (2024-10-02T20:15:29Z) - One step closer to unbiased aleatoric uncertainty estimation [71.55174353766289]
We propose a new estimation method by actively de-noising the observed data.
By conducting a broad range of experiments, we demonstrate that our proposed approach provides a much closer approximation to the actual data uncertainty than the standard method.
arXiv Detail & Related papers (2023-12-16T14:59:11Z) - Equal Opportunity of Coverage in Fair Regression [50.76908018786335]
We study fair machine learning (ML) under predictive uncertainty to enable reliable and trustworthy decision-making.
We propose Equal Opportunity of Coverage (EOC) that aims to achieve two properties: (1) coverage rates for different groups with similar outcomes are close, and (2) the coverage rate for the entire population remains at a predetermined level.
arXiv Detail & Related papers (2023-11-03T21:19:59Z) - Understanding Fairness Surrogate Functions in Algorithmic Fairness [21.555040357521907]
We show that there is a surrogate-fairness gap between the fairness definition and the fairness surrogate function.
We elaborate a novel and general algorithm called Balanced Surrogate, which iteratively reduces the gap to mitigate unfairness.
arXiv Detail & Related papers (2023-10-17T12:40:53Z) - Learning for Counterfactual Fairness from Observational Data [62.43249746968616]
Fairness-aware machine learning aims to eliminate biases of learning models against certain subgroups described by certain protected (sensitive) attributes such as race, gender, and age.
A prerequisite for existing methods to achieve counterfactual fairness is the prior human knowledge of the causal model for the data.
In this work, we address the problem of counterfactually fair prediction from observational data without given causal models by proposing a novel framework CLAIRE.
arXiv Detail & Related papers (2023-07-17T04:08:29Z) - RobustFair: Adversarial Evaluation through Fairness Confusion Directed
Gradient Search [8.278129731168127]
Deep neural networks (DNNs) often face challenges due to their vulnerability to various adversarial perturbations.
This paper introduces a novel approach, RobustFair, to evaluate the accurate fairness of DNNs when subjected to false or biased perturbations.
arXiv Detail & Related papers (2023-05-18T12:07:29Z) - Fairness in Matching under Uncertainty [78.39459690570531]
algorithmic two-sided marketplaces have drawn attention to the issue of fairness in such settings.
We axiomatize a notion of individual fairness in the two-sided marketplace setting which respects the uncertainty in the merits.
We design a linear programming framework to find fair utility-maximizing distributions over allocations.
arXiv Detail & Related papers (2023-02-08T00:30:32Z) - Reliability-Aware Prediction via Uncertainty Learning for Person Image
Retrieval [51.83967175585896]
UAL aims at providing reliability-aware predictions by considering data uncertainty and model uncertainty simultaneously.
Data uncertainty captures the noise" inherent in the sample, while model uncertainty depicts the model's confidence in the sample's prediction.
arXiv Detail & Related papers (2022-10-24T17:53:20Z) - Dense Uncertainty Estimation via an Ensemble-based Conditional Latent
Variable Model [68.34559610536614]
We argue that the aleatoric uncertainty is an inherent attribute of the data and can only be correctly estimated with an unbiased oracle model.
We propose a new sampling and selection strategy at train time to approximate the oracle model for aleatoric uncertainty estimation.
Our results show that our solution achieves both accurate deterministic results and reliable uncertainty estimation.
arXiv Detail & Related papers (2021-11-22T08:54:10Z) - Accounting for Model Uncertainty in Algorithmic Discrimination [16.654676310264705]
We argue that the fairness approaches should instead focus only on equalizing errors arising due to model uncertainty.
We draw a connection between predictive multiplicity and model uncertainty and argue that the techniques from predictive multiplicity could be used to identify errors made due to model uncertainty.
arXiv Detail & Related papers (2021-05-10T10:34:12Z) - Accuracy and Fairness Trade-offs in Machine Learning: A Stochastic
Multi-Objective Approach [0.0]
In the application of machine learning to real-life decision-making systems, the prediction outcomes might discriminate against people with sensitive attributes, leading to unfairness.
The commonly used strategy in fair machine learning is to include fairness as a constraint or a penalization term in the minimization of the prediction loss.
In this paper, we introduce a new approach to handle fairness by formulating a multi-objective optimization problem.
arXiv Detail & Related papers (2020-08-03T18:51:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.