Online Learning for Scheduling MIP Heuristics
- URL: http://arxiv.org/abs/2304.03755v1
- Date: Tue, 4 Apr 2023 14:55:15 GMT
- Title: Online Learning for Scheduling MIP Heuristics
- Authors: Antonia Chmiela, Ambros Gleixner, Pawel Lichocki, Sebastian Pokutta
- Abstract summary: We propose an online learning approach that adapts the application of solvers towards the single instance at hand.
We replace the commonly used static handling with an adaptive framework exploiting past observations.
For harder instances that take at least 1000 seconds to solve, we observe a speedup of 4%.
- Score: 15.599296461516982
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mixed Integer Programming (MIP) is NP-hard, and yet modern solvers often
solve large real-world problems within minutes. This success can partially be
attributed to heuristics. Since their behavior is highly instance-dependent,
relying on hard-coded rules derived from empirical testing on a large
heterogeneous corpora of benchmark instances might lead to sub-optimal
performance. In this work, we propose an online learning approach that adapts
the application of heuristics towards the single instance at hand. We replace
the commonly used static heuristic handling with an adaptive framework
exploiting past observations about the heuristic's behavior to make future
decisions. In particular, we model the problem of controlling Large
Neighborhood Search and Diving - two broad and complex classes of heuristics -
as a multi-armed bandit problem. Going beyond existing work in the literature,
we control two different classes of heuristics simultaneously by a single
learning agent. We verify our approach numerically and show consistent node
reductions over the MIPLIB 2017 Benchmark set. For harder instances that take
at least 1000 seconds to solve, we observe a speedup of 4%.
Related papers
- An Unsupervised Learning Framework Combined with Heuristics for the Maximum Minimal Cut Problem [5.092968949752308]
This work proposes an unsupervised learning framework combined with Maximums for MMCP.
A crucial observation is that each solution corresponds to at least one spanning tree.
We conduct extensive experiments to evaluate our framework and give a specific application.
arXiv Detail & Related papers (2024-08-16T02:07:34Z) - Deciphering Movement: Unified Trajectory Generation Model for Multi-Agent [53.637837706712794]
We propose a Unified Trajectory Generation model, UniTraj, that processes arbitrary trajectories as masked inputs.
Specifically, we introduce a Ghost Spatial Masking (GSM) module embedded within a Transformer encoder for spatial feature extraction.
We benchmark three practical sports game datasets, Basketball-U, Football-U, and Soccer-U, for evaluation.
arXiv Detail & Related papers (2024-05-27T22:15:23Z) - Planning for Sample Efficient Imitation Learning [52.44953015011569]
Current imitation algorithms struggle to achieve high performance and high in-environment sample efficiency simultaneously.
We propose EfficientImitate, a planning-based imitation learning method that can achieve high in-environment sample efficiency and performance simultaneously.
Experimental results show that EI achieves state-of-the-art results in performance and sample efficiency.
arXiv Detail & Related papers (2022-10-18T05:19:26Z) - A Novel Plug-and-Play Approach for Adversarially Robust Generalization [38.72514422694518]
We propose a robust framework that employs adversarially robust training to safeguard the ML models against perturbed testing data.
Our contributions can be seen from both computational and statistical perspectives.
arXiv Detail & Related papers (2022-08-19T17:02:55Z) - Reinforcement Learning for Branch-and-Bound Optimisation using
Retrospective Trajectories [72.15369769265398]
Machine learning has emerged as a promising paradigm for branching.
We propose retro branching; a simple yet effective approach to RL for branching.
We outperform the current state-of-the-art RL branching algorithm by 3-5x and come within 20% of the best IL method's performance on MILPs with 500 constraints and 1000 variables.
arXiv Detail & Related papers (2022-05-28T06:08:07Z) - Minimizing Entropy to Discover Good Solutions to Recurrent Mixed Integer
Programs [0.0]
Current solvers for mixed-integer programming (MIP) problems are designed to perform well on a wide range of problems.
Recent works have shown that machine learning (ML) can be integrated with an MIP solver to inject domain knowledge and efficiently close the optimality gap.
This paper proposes an online solver that uses the notion of entropy to efficiently build a model with minimal training data and tuning.
arXiv Detail & Related papers (2022-02-07T18:52:56Z) - Simple Stochastic and Online Gradient DescentAlgorithms for Pairwise
Learning [65.54757265434465]
Pairwise learning refers to learning tasks where the loss function depends on a pair instances.
Online descent (OGD) is a popular approach to handle streaming data in pairwise learning.
In this paper, we propose simple and online descent to methods for pairwise learning.
arXiv Detail & Related papers (2021-11-23T18:10:48Z) - An actor-critic algorithm with policy gradients to solve the job shop
scheduling problem using deep double recurrent agents [1.3812010983144802]
We propose a deep reinforcement learning methodology for the job shop scheduling problem (JSSP)
The aim is to build up a greedy-like able to learn on some distribution of JSSP instances, different in the number of jobs and machines.
As expected, the model can generalize, to some extent, to larger problems or instances originated by a different distribution from the one used in training.
arXiv Detail & Related papers (2021-10-18T07:55:39Z) - Softmax with Regularization: Better Value Estimation in Multi-Agent
Reinforcement Learning [72.28520951105207]
Overestimation in $Q$-learning is an important problem that has been extensively studied in single-agent reinforcement learning.
We propose a novel regularization-based update scheme that penalizes large joint action-values deviating from a baseline.
We show that our method provides a consistent performance improvement on a set of challenging StarCraft II micromanagement tasks.
arXiv Detail & Related papers (2021-03-22T14:18:39Z) - Learning to Schedule Heuristics in Branch-and-Bound [25.79025327341732]
Real-world applications typically require finding good solutions early in the search to enable fast decision-making.
We propose the first data-driven framework for schedulings in an exact MIP solver.
Compared to the default settings of a state-of-the-art academic MIP solver, we are able to reduce the average primal integral by up to 49% on a class of challenging instances.
arXiv Detail & Related papers (2021-03-18T14:49:52Z) - Resource Allocation in Multi-armed Bandit Exploration: Overcoming
Sublinear Scaling with Adaptive Parallelism [107.48538091418412]
We study exploration in multi-armed bandits when we have access to a divisible resource that can be allocated in varying amounts to arm pulls.
We focus in particular on the allocation of distributed computing resources, where we may obtain results faster by allocating more resources per pull.
arXiv Detail & Related papers (2020-10-31T18:19:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.