論文の概要: EnforceSNN: Enabling Resilient and Energy-Efficient Spiking Neural
Network Inference considering Approximate DRAMs for Embedded Systems
- arxiv url: http://arxiv.org/abs/2304.04039v1
- Date: Sat, 8 Apr 2023 15:15:11 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-11 18:05:17.370903
- Title: EnforceSNN: Enabling Resilient and Energy-Efficient Spiking Neural
Network Inference considering Approximate DRAMs for Embedded Systems
- Title(参考訳): EnforceSNN:組み込みシステムにおける近似DRAMを考慮したレジリエントかつエネルギー効率の良いスパイクニューラルネットワーク推論の実現
- Authors: Rachmad Vidya Wicaksana Putra, Muhammad Abdullah Hanif, Muhammad
Shafique
- Abstract要約: スパイキングニューラルネットワーク(SNN)は、教師なし設定下で高い精度と低い運用電力/エネルギーを達成する能力を示している。
本稿では、低電圧DRAMを用いたレジリエンスおよびエネルギー効率の高いSNN推論のためのソリューションを提供する新しい設計フレームワークであるEnforceSNNを提案する。
- 参考スコア(独自算出の注目度): 15.115813664357436
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spiking Neural Networks (SNNs) have shown capabilities of achieving high
accuracy under unsupervised settings and low operational power/energy due to
their bio-plausible computations. Previous studies identified that DRAM-based
off-chip memory accesses dominate the energy consumption of SNN processing.
However, state-of-the-art works do not optimize the DRAM energy-per-access,
thereby hindering the SNN-based systems from achieving further energy
efficiency gains. To substantially reduce the DRAM energy-per-access, an
effective solution is to decrease the DRAM supply voltage, but it may lead to
errors in DRAM cells (i.e., so-called approximate DRAM). Towards this, we
propose \textit{EnforceSNN}, a novel design framework that provides a solution
for resilient and energy-efficient SNN inference using reduced-voltage DRAM for
embedded systems. The key mechanisms of our EnforceSNN are: (1) employing
quantized weights to reduce the DRAM access energy; (2) devising an efficient
DRAM mapping policy to minimize the DRAM energy-per-access; (3) analyzing the
SNN error tolerance to understand its accuracy profile considering different
bit error rate (BER) values; (4) leveraging the information for developing an
efficient fault-aware training (FAT) that considers different BER values and
bit error locations in DRAM to improve the SNN error tolerance; and (5)
developing an algorithm to select the SNN model that offers good trade-offs
among accuracy, memory, and energy consumption. The experimental results show
that our EnforceSNN maintains the accuracy (i.e., no accuracy loss for BER
less-or-equal 10^-3) as compared to the baseline SNN with accurate DRAM, while
achieving up to 84.9\% of DRAM energy saving and up to 4.1x speed-up of DRAM
data throughput across different network sizes.
- Abstract(参考訳): スパイキングニューラルネットワーク(SNN)は、非教師なし設定下で高い精度を達成する能力と、バイオプレース可能な計算による運用電力/エネルギーの低さを示している。
以前の研究では、DRAMベースのオフチップメモリアクセスがSNN処理のエネルギー消費を支配していることが分かった。
しかし、最先端の研究はDRAMのアクセス当たりのエネルギー効率を最適化しないため、SNNベースのシステムがさらなるエネルギー効率向上を達成するのを妨げている。
アクセス当たりのDRAMエネルギーを大幅に削減するために、有効な解決策はDRAM供給電圧を下げることであるが、これはDRAMセル(いわゆる近似DRAM)のエラーにつながる可能性がある。
そこで本研究では, 組込みシステムにおける低電圧DRAMを用いたレジリエンスおよびエネルギー効率のよいSNN推論のためのソリューションを提供する, 新たな設計フレームワークである \textit{EnforceSNN} を提案する。
The key mechanisms of our EnforceSNN are: (1) employing quantized weights to reduce the DRAM access energy; (2) devising an efficient DRAM mapping policy to minimize the DRAM energy-per-access; (3) analyzing the SNN error tolerance to understand its accuracy profile considering different bit error rate (BER) values; (4) leveraging the information for developing an efficient fault-aware training (FAT) that considers different BER values and bit error locations in DRAM to improve the SNN error tolerance; and (5) developing an algorithm to select the SNN model that offers good trade-offs among accuracy, memory, and energy consumption.
実験の結果,我々の EnforceSNN は,DRAM のベースラインである SNN と比較して精度(すなわち,BER が 10^-3 以下である場合)を維持しつつ,最大84.9 % のDRAM 省エネを実現し,DRAM データのスループットの4.1 倍の高速化を実現していることがわかった。
関連論文リスト
- Enabling Efficient and Scalable DRAM Read Disturbance Mitigation via New Experimental Insights into Modern DRAM Chips [0.0]
ストレージ密度は、システムレベルの攻撃によって悪用される回路レベルの脆弱性であるDRAM読み取り障害を悪化させる。
既存の防御は効果がないか、違法に高価である。
1)DRAMベースのシステムの保護は、技術スケーリングが読み取り障害の脆弱性を増大させるにつれてコストが高くなり、2)既存のソリューションの多くはDRAM内部の独自知識に依存している。
論文 参考訳(メタデータ) (2024-08-27T13:12:03Z) - PENDRAM: Enabling High-Performance and Energy-Efficient Processing of Deep Neural Networks through a Generalized DRAM Data Mapping Policy [6.85785397160228]
畳み込みニューラルネットワーク(CNN)は、機械学習タスクを解決する最先端のソリューションとして登場した。
CNNアクセラレータは、高オフチップメモリ(DRAM)アクセスレイテンシとエネルギのために、パフォーマンスとエネルギー効率の課題に直面している。
本稿では,高性能でエネルギー効率の良いCNN加速を実現する新しい設計空間探索手法であるPENDRAMを提案する。
論文 参考訳(メタデータ) (2024-08-05T12:11:09Z) - NeuralFuse: Learning to Recover the Accuracy of Access-Limited Neural
Network Inference in Low-Voltage Regimes [52.51014498593644]
ディープラーニング(Deep Neural Network, DNN)は、機械学習においてユビキタスになったが、そのエネルギー消費は依然として注目すべき問題である。
我々は、低電圧状態における精度とエネルギーのトレードオフに対処する新しいアドオンモジュールであるNeuralFuseを紹介する。
1%のビットエラー率で、NeuralFuseはメモリアクセスエネルギーを最大24%削減し、精度を最大57%向上させることができる。
論文 参考訳(メタデータ) (2023-06-29T11:38:22Z) - Fault-Aware Design and Training to Enhance DNNs Reliability with
Zero-Overhead [67.87678914831477]
ディープニューラルネットワーク(DNN)は、幅広い技術的進歩を可能にする。
最近の知見は、過渡的なハードウェア欠陥がモデル予測を劇的に損なう可能性があることを示唆している。
本研究では,トレーニングとモデル設計の両面で信頼性の問題に取り組むことを提案する。
論文 参考訳(メタデータ) (2022-05-28T13:09:30Z) - Random and Adversarial Bit Error Robustness: Energy-Efficient and Secure
DNN Accelerators [105.60654479548356]
固定点量子化と重み切り、およびランダムビット誤り訓練(RandBET)の組み合わせにより、量子化DNN重みにおけるランダムビット誤りや逆ビット誤りに対するロバスト性を著しく向上することを示す。
これは低電圧運転のための高省エネと低精度量子化をもたらすが、DNN加速器の安全性も向上する。
論文 参考訳(メタデータ) (2021-04-16T19:11:14Z) - SparkXD: A Framework for Resilient and Energy-Efficient Spiking Neural
Network Inference using Approximate DRAM [15.115813664357436]
スパイキングニューラルネットワーク(SNN)は、生物学的に疎い計算のために低エネルギー消費を達成する可能性がある。
いくつかの研究により、オフチップメモリ(DRAM)アクセスがSNN処理において最もエネルギー消費が大きいことが示されている。
我々は、回復力とエネルギー効率のよいSNN推論のための包括的コンジョイントソリューションを提供する新しいフレームワークSparkXDを提案する。
論文 参考訳(メタデータ) (2021-02-28T08:12:26Z) - SmartDeal: Re-Modeling Deep Network Weights for Efficient Inference and
Training [82.35376405568975]
ディープニューラルネットワーク(DNN)は重いパラメータ化を伴い、ストレージ用の外部動的ランダムアクセスメモリ(DRAM)につながります。
We present SmartDeal (SD), a algorithm framework to trade high-cost memory storage/ access for lower-cost compute。
SDは貯蔵および訓練エネルギーの10.56xそして4.48x減少、最先端の訓練のベースラインと比較される無視可能な正確さの損失をもたらすことを示します。
論文 参考訳(メタデータ) (2021-01-04T18:54:07Z) - Bit Error Robustness for Energy-Efficient DNN Accelerators [93.58572811484022]
本稿では、ロバストな固定点量子化、重み切り、ランダムビット誤り訓練(RandBET)の組み合わせにより、ランダムビット誤りに対するロバスト性を向上することを示す。
これは低電圧動作と低精度量子化の両方から高エネルギーの節約につながる。
論文 参考訳(メタデータ) (2020-06-24T18:23:10Z) - SmartExchange: Trading Higher-cost Memory Storage/Access for Lower-cost
Computation [97.78417228445883]
We present SmartExchange, a algorithm- hardware co-design framework for energy- efficient inference of Deep Neural Network (DNNs)。
そこで我々は,非零要素がすべてパワー・オブ・ツーである小さな基底行列と大きなスパース係数行列の積として,各重み行列を格納できる,特別に好ましいDNN重み構造を強制する新しいアルゴリズムを開発した。
さらに、SmartExchange強化重量をフル活用し、エネルギー効率と遅延性能の両方を改善するための専用のアクセラレータを設計する。
論文 参考訳(メタデータ) (2020-05-07T12:12:49Z) - DRMap: A Generic DRAM Data Mapping Policy for Energy-Efficient
Processing of Convolutional Neural Networks [15.115813664357436]
異なるDRAMアーキテクチャ上で異なるマッピングポリシーのレイテンシとエネルギについて検討する。
その結果, 行バッファヒット, バンクレベル, サブアレイレベルの並列化を最優先するマッピングポリシにより, エネルギー効率の高いDRAMアクセスを実現することができた。
論文 参考訳(メタデータ) (2020-04-21T23:26:23Z) - Data-Driven Neuromorphic DRAM-based CNN and RNN Accelerators [13.47462920292399]
ハードウェアアクセラレーター上で大きなディープニューラルネットワーク(DNN)を実行することで消費されるエネルギーは、状態と重みの両方を保存するために大量の高速メモリを必要としている。
DRAMは高価で低コストなメモリ(DRAMより20倍安い)であるが、長いランダムアクセスレイテンシはスパイキングニューラルネットワーク(SNN)の予測不可能なアクセスパターンにとって悪い。
本稿では,SNNと同様の空間的あるいは時間的間隔を生かしながら,SOAスループット,電力効率,レイテンシを実現する深層ニューラルネットワークハードウェアアクセラレータの過去5年間の展開について報告する。
論文 参考訳(メタデータ) (2020-03-29T11:45:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。