論文の概要: A Recommender System Approach for Very Large-scale Multiobjective
Optimization
- arxiv url: http://arxiv.org/abs/2304.04067v1
- Date: Sat, 8 Apr 2023 16:51:27 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-11 17:58:04.714487
- Title: A Recommender System Approach for Very Large-scale Multiobjective
Optimization
- Title(参考訳): 大規模多目的最適化のためのレコメンダシステムアプローチ
- Authors: Haokai Hong, Min Jiang, Jonathan M. Garibaldi, Qiuzhen Lin and Kay
Chen Tan
- Abstract要約: 決定変数の数が10万次元を超えるような、非常に大きな多目的最適化問題を定義する。
Recommender Systems (VMORS) を用いた大規模多目的最適化手法を提案する。
フレームワークでは、ソリューションはユーザと見なされ、さまざまな進化方向が推奨を待っているアイテムである。
- 参考スコア(独自算出の注目度): 20.69390097495732
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We define very large multi-objective optimization problems to be
multiobjective optimization problems in which the number of decision variables
is greater than 100,000 dimensions. This is an important class of problems as
many real-world problems require optimizing hundreds of thousands of variables.
Existing evolutionary optimization methods fall short of such requirements when
dealing with problems at this very large scale. Inspired by the success of
existing recommender systems to handle very large-scale items with limited
historical interactions, in this paper we propose a method termed Very
large-scale Multiobjective Optimization through Recommender Systems (VMORS).
The idea of the proposed method is to transform the defined such very
large-scale problems into a problem that can be tackled by a recommender
system. In the framework, the solutions are regarded as users, and the
different evolution directions are items waiting for the recommendation. We use
Thompson sampling to recommend the most suitable items (evolutionary
directions) for different users (solutions), in order to locate the optimal
solution to a multiobjective optimization problem in a very large search space
within acceptable time. We test our proposed method on different problems from
100,000 to 500,000 dimensions, and experimental results show that our method
not only shows good performance but also significant improvement over existing
methods.
- Abstract(参考訳): 非常に大きな多目的最適化問題を、決定変数の数が10万次元を超える多目的最適化問題と定義する。
多くの現実世界の問題は数十万の変数を最適化する必要があるため、これは重要な問題である。
既存の進化的最適化手法は、この非常に大規模な問題を扱う場合、このような要件に欠ける。
歴史的相互作用の少ない非常に大規模な項目を扱うための既存のレコメンダシステムの成功に触発されて,本論文では,レコメンダシステム(vmor)を用いた大規模多目的最適化手法を提案する。
提案手法の考え方は,定義した超大規模問題をレコメンダシステムによって解決可能な問題に変換することである。
フレームワークでは、ソリューションはユーザと見なされ、さまざまな進化方向が推奨を待っているアイテムである。
我々は,多目的最適化問題に対する最適解を許容時間内に非常に大きな探索空間に見つけるために,トンプソンサンプリングを用いて,異なるユーザ(ソリューション)に対して最適な項目(進化方向)を推薦する。
提案手法は,10万次元から50万次元の異なる問題に対して実験を行い,提案手法が優れた性能を示すだけでなく,既存の手法よりも大幅に改善することを示す。
関連論文リスト
- Towards Efficient Pareto Set Approximation via Mixture of Experts Based Model Fusion [53.33473557562837]
大規模深層ニューラルネットワークに対する多目的最適化問題を解くことは、損失ランドスケープの複雑さと高価な計算コストのために難しい課題である。
本稿では,専門家(MoE)をベースとしたモデル融合を用いて,この問題を実用的でスケーラブルに解決する手法を提案する。
特殊な単一タスクモデルの重みをまとめることで、MoEモジュールは複数の目的間のトレードオフを効果的に捉えることができる。
論文 参考訳(メタデータ) (2024-06-14T07:16:18Z) - Smooth Tchebycheff Scalarization for Multi-Objective Optimization [15.047246588148495]
多目的最適化問題は、目的が相反することが多く、単一のソリューションでは最適化できない、多くの実世界のアプリケーションで見られる。
勾配に基づく多目的最適化のための軽量で効率的なスムーズなTchebycheffスキャラライズ手法を提案する。
論文 参考訳(メタデータ) (2024-02-29T12:03:05Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
本稿では,DeepMatching NetworksとReinforcement Learningメソッドの有効性を解析するための新しい理論フレームワークを提案する。
我々の主な貢献は、Max- and Min-Cut、Max-$k$-Bipartite-Bi、Maximum-Weight-Bipartite-Bi、Traveing Salesman Problemを含む幅広い問題である。
本分析の副産物として,バニラ降下による新たな正則化プロセスを導入し,失効する段階的な問題に対処し,悪い静止点から逃れる上で有効であることを示す理論的および実験的証拠を提供する。
論文 参考訳(メタデータ) (2023-10-08T23:39:38Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
分子目的を最適化するための様々なZO最適化手法の有効性について検討する。
ZO符号に基づく勾配降下(ZO-signGD)の利点を示す。
本稿では,Guurcamol スイートから広く使用されているベンチマークタスクに対して,ZO 最適化手法の有効性を示す。
論文 参考訳(メタデータ) (2022-10-27T01:58:10Z) - Multi-objective optimization via equivariant deep hypervolume
approximation [3.069335774032178]
深層ニューラルネットワークを用いて超体積関数を近似する方法を示す。
提案手法は,精度,計算時間,一般化の観点から,高精度で近似的な超体積法に対して評価する。
論文 参考訳(メタデータ) (2022-10-05T12:07:13Z) - Balancing Exploration and Exploitation for Solving Large-scale
Multiobjective Optimization via Attention Mechanism [18.852491892952514]
注意機構に基づく大規模多目的最適化アルゴリズム(LMOAM)を提案する。
注意機構は、各決定変数に固有の重みを割り当て、LMOAMは、この重みを使って、決定変数レベルからの探索とエクスプロイトのバランスを取る。
論文 参考訳(メタデータ) (2022-05-20T09:45:49Z) - Learning Proximal Operators to Discover Multiple Optima [66.98045013486794]
非家族問題における近位演算子を学習するためのエンドツーエンド手法を提案する。
本手法は,弱い目的と穏やかな条件下では,世界規模で収束することを示す。
論文 参考訳(メタデータ) (2022-01-28T05:53:28Z) - Solving Large-Scale Multi-Objective Optimization via Probabilistic
Prediction Model [10.916384208006157]
効率的なLSMOPアルゴリズムは、巨大な検索空間から局所最適解を逃れる能力を持つべきである。
人口の多様性を維持することは、探索効率を向上させる効果的な方法の1つである。
LSMOP に取り組むために,トレンド予測モデルと LT-PPM と呼ばれる生成フィルタ戦略に基づく確率的予測モデルを提案する。
論文 参考訳(メタデータ) (2021-07-16T09:43:35Z) - Offline Model-Based Optimization via Normalized Maximum Likelihood
Estimation [101.22379613810881]
データ駆動最適化の問題を検討し、一定の点セットでクエリのみを与えられた関数を最大化する必要がある。
この問題は、関数評価が複雑で高価なプロセスである多くの領域に現れる。
我々は,提案手法を高容量ニューラルネットワークモデルに拡張可能なトラクタブル近似を提案する。
論文 参考訳(メタデータ) (2021-02-16T06:04:27Z) - Manifold Interpolation for Large-Scale Multi-Objective Optimization via
Generative Adversarial Networks [12.18471608552718]
大規模多目的最適化問題(LSMOP)は、数百から数千の決定変数と複数の矛盾する目的を含むことを特徴とする。
これまでの研究では、これらの最適解は低次元空間の多様体構造に一様に分布していることが示されている。
本研究では, 生成逆数ネットワーク(GAN)に基づく多様体フレームワークを提案し, 多様体を学習し, 高品質な解を生成する。
論文 参考訳(メタデータ) (2021-01-08T09:38:38Z) - Follow the bisector: a simple method for multi-objective optimization [65.83318707752385]
複数の異なる損失を最小化しなければならない最適化問題を考える。
提案手法は、各イテレーションにおける降下方向を計算し、目的関数の相対的減少を等しく保証する。
論文 参考訳(メタデータ) (2020-07-14T09:50:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。