ForamViT-GAN: Exploring New Paradigms in Deep Learning for
Micropaleontological Image Analysis
- URL: http://arxiv.org/abs/2304.04291v1
- Date: Sun, 9 Apr 2023 18:49:38 GMT
- Title: ForamViT-GAN: Exploring New Paradigms in Deep Learning for
Micropaleontological Image Analysis
- Authors: Ivan Ferreira-Chacua, Ardiansyah Koeshidayatullah
- Abstract summary: We propose a novel deep learning workflow combining hierarchical vision transformers with style-based generative adversarial network algorithms.
Our study shows that this workflow can generate high-resolution images with a high signal-to-noise ratio (39.1 dB) and realistic synthetic images with a Frechet distance similarity score of 14.88.
For the first time, we performed few-shot semantic segmentation of different foraminifera chambers on both generated and synthetic images with high accuracy.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Micropaleontology in geosciences focuses on studying the evolution of
microfossils (e.g., foraminifera) through geological records to reconstruct
past environmental and climatic conditions. This field heavily relies on visual
recognition of microfossil features, making it suitable for computer vision
technology, specifically deep convolutional neural networks (CNNs), to automate
and optimize microfossil identification and classification. However, the
application of deep learning in micropaleontology is hindered by limited
availability of high-quality, high-resolution labeled fossil images and the
significant manual labeling effort required by experts. To address these
challenges, we propose a novel deep learning workflow combining hierarchical
vision transformers with style-based generative adversarial network algorithms
to efficiently acquire and synthetically generate realistic high-resolution
labeled datasets of micropaleontology in large volumes. Our study shows that
this workflow can generate high-resolution images with a high signal-to-noise
ratio (39.1 dB) and realistic synthetic images with a Frechet inception
distance similarity score of 14.88. Additionally, our workflow provides a large
volume of self-labeled datasets for model benchmarking and various downstream
visual tasks, including fossil classification and segmentation. For the first
time, we performed few-shot semantic segmentation of different foraminifera
chambers on both generated and synthetic images with high accuracy. This novel
meta-learning approach is only possible with the availability of
high-resolution, high-volume labeled datasets. Our deep learning-based workflow
shows promise in advancing and optimizing micropaleontological research and
other visual-dependent geological analyses.
Related papers
- Dataset Distillation for Histopathology Image Classification [46.04496989951066]
We introduce a novel dataset distillation algorithm tailored for histopathology image datasets (Histo-DD)
We conduct a comprehensive evaluation of the effectiveness of the proposed algorithm and the generated histopathology samples in both patch-level and slide-level classification tasks.
arXiv Detail & Related papers (2024-08-19T05:53:38Z) - Neural Echos: Depthwise Convolutional Filters Replicate Biological
Receptive Fields [56.69755544814834]
We present evidence suggesting that depthwise convolutional kernels are effectively replicating the biological receptive fields observed in the mammalian retina.
We propose a scheme that draws inspiration from the biological receptive fields.
arXiv Detail & Related papers (2024-01-18T18:06:22Z) - Optimizations of Autoencoders for Analysis and Classification of
Microscopic In Situ Hybridization Images [68.8204255655161]
We propose a deep-learning framework to detect and classify areas of microscopic images with similar levels of gene expression.
The data we analyze requires an unsupervised learning model for which we employ a type of Artificial Neural Network - Deep Learning Autoencoders.
arXiv Detail & Related papers (2023-04-19T13:45:28Z) - PetroGAN: A novel GAN-based approach to generate realistic, label-free
petrographic datasets [0.0]
We develop a novel deep learning framework based on generative adversarial networks (GANs) to create the first realistic synthetic petrographic dataset.
The training dataset consists of 10070 images of rock thin sections both in plane- and cross-polarized light.
The algorithm trained for 264 GPU hours and reached a state-of-the-art Fr'echet Inception Distance (FID) score of 12.49 for petrographic images.
arXiv Detail & Related papers (2022-04-07T01:55:53Z) - Sharp-GAN: Sharpness Loss Regularized GAN for Histopathology Image
Synthesis [65.47507533905188]
Conditional generative adversarial networks have been applied to generate synthetic histopathology images.
We propose a sharpness loss regularized generative adversarial network to synthesize realistic histopathology images.
arXiv Detail & Related papers (2021-10-27T18:54:25Z) - A parameter refinement method for Ptychography based on Deep Learning
concepts [55.41644538483948]
coarse parametrisation in propagation distance, position errors and partial coherence frequently menaces the experiment viability.
A modern Deep Learning framework is used to correct autonomously the setup incoherences, thus improving the quality of a ptychography reconstruction.
We tested our system on both synthetic datasets and also on real data acquired at the TwinMic beamline of the Elettra synchrotron facility.
arXiv Detail & Related papers (2021-05-18T10:15:17Z) - Deep learning-based super-resolution fluorescence microscopy on small
datasets [20.349746411933495]
Deep learning has shown the potentials to reduce the technical barrier and obtain super-resolution from diffraction-limited images.
We demonstrate a new convolutional neural network-based approach that is successfully trained with small datasets and super-resolution images.
This model can be applied to other biomedical imaging modalities such as MRI and X-ray imaging, where obtaining large training datasets is challenging.
arXiv Detail & Related papers (2021-03-07T03:17:47Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
We propose a novel Machine Learning architecture, which allows us to infuse a neural deep network with human-powered abstraction on the level of data.
Specifically, we train a generative model simultaneously on natural and synthetic data, so that it learns a shared representation, from which a target variable, such as the cell count, can be reliably estimated.
arXiv Detail & Related papers (2020-10-20T08:36:51Z) - Modality Attention and Sampling Enables Deep Learning with Heterogeneous
Marker Combinations in Fluorescence Microscopy [5.334932400937323]
Fluorescence microscopy allows for a detailed inspection of cells, cellular networks, and anatomical landmarks by staining with a variety of carefully-selected markers visualized as color channels.
Despite the success of deep learning methods in other vision applications, their potential for fluorescence image analysis remains underexploited.
We propose Marker Sampling and Excite, a neural network approach with a modality sampling strategy and a novel attention module.
arXiv Detail & Related papers (2020-08-27T21:57:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.