Class-Imbalanced Learning on Graphs: A Survey
- URL: http://arxiv.org/abs/2304.04300v1
- Date: Sun, 9 Apr 2023 19:21:46 GMT
- Title: Class-Imbalanced Learning on Graphs: A Survey
- Authors: Yihong Ma, Yijun Tian, Nuno Moniz, Nitesh V. Chawla
- Abstract summary: This survey aims to offer a comprehensive understanding of the current state-of-the-art in class-imbalanced learning on graphs (CILG)
We introduce the first taxonomy of existing work and its connection to existing imbalanced learning literature.
We critically analyze recent work in CILG and discuss urgent lines of inquiry within the topic.
- Score: 16.175306073813235
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid advancement in data-driven research has increased the demand for
effective graph data analysis. However, real-world data often exhibits class
imbalance, leading to poor performance of machine learning models. To overcome
this challenge, class-imbalanced learning on graphs (CILG) has emerged as a
promising solution that combines the strengths of graph representation learning
and class-imbalanced learning. In recent years, significant progress has been
made in CILG. Anticipating that such a trend will continue, this survey aims to
offer a comprehensive understanding of the current state-of-the-art in CILG and
provide insights for future research directions. Concerning the former, we
introduce the first taxonomy of existing work and its connection to existing
imbalanced learning literature. Concerning the latter, we critically analyze
recent work in CILG and discuss urgent lines of inquiry within the topic.
Moreover, we provide a continuously maintained reading list of papers and code
at https://github.com/yihongma/CILG-Papers.
Related papers
- Towards Graph Contrastive Learning: A Survey and Beyond [23.109430624817637]
Self-supervised learning (SSL) on graphs has gained increasing attention and has made significant progress.
SSL enables machine learning models to produce informative representations from unlabeled graph data.
Graph Contrastive Learning (GCL) has not been thoroughly investigated in the existing literature.
arXiv Detail & Related papers (2024-05-20T08:19:10Z) - Continual Learning on Graphs: Challenges, Solutions, and Opportunities [72.7886669278433]
We provide a comprehensive review of existing continual graph learning (CGL) algorithms.
We compare methods with traditional continual learning techniques and analyze the applicability of the traditional continual learning techniques to forgetting tasks.
We will maintain an up-to-date repository featuring a comprehensive list of accessible algorithms.
arXiv Detail & Related papers (2024-02-18T12:24:45Z) - Few-Shot Learning on Graphs: from Meta-learning to Pre-training and
Prompting [56.25730255038747]
This survey endeavors to synthesize recent developments, provide comparative insights, and identify future directions.
We systematically categorize existing studies into three major families: meta-learning approaches, pre-training approaches, and hybrid approaches.
We analyze the relationships among these methods and compare their strengths and limitations.
arXiv Detail & Related papers (2024-02-02T14:32:42Z) - A Survey of Data-Efficient Graph Learning [16.053913182723143]
We introduce a novel concept of Data-Efficient Graph Learning (DEGL) as a research frontier.
We systematically review recent advances on several key aspects, including self-supervised graph learning, semi-supervised graph learning, and few-shot graph learning.
arXiv Detail & Related papers (2024-02-01T09:28:48Z) - A Survey of Imbalanced Learning on Graphs: Problems, Techniques, and
Future Directions [64.84521350148513]
Graphs represent interconnected structures prevalent in a myriad of real-world scenarios.
Effective graph analytics, such as graph learning methods, enables users to gain profound insights from graph data.
However, these methods often suffer from data imbalance, a common issue in graph data where certain segments possess abundant data while others are scarce.
This necessitates the emerging field of imbalanced learning on graphs, which aims to correct these data distribution skews for more accurate and representative learning outcomes.
arXiv Detail & Related papers (2023-08-26T09:11:44Z) - Deep learning for dynamic graphs: models and benchmarks [16.851689741256912]
Recent progress in research on Deep Graph Networks (DGNs) has led to a maturation of the domain of learning on graphs.
Despite the growth of this research field, there are still important challenges that are yet unsolved.
arXiv Detail & Related papers (2023-07-12T12:02:36Z) - Curriculum Graph Machine Learning: A Survey [51.89783017927647]
curriculum graph machine learning (Graph CL) integrates the strength of graph machine learning and curriculum learning.
This paper comprehensively overview approaches on Graph CL and present a detailed survey of recent advances in this direction.
arXiv Detail & Related papers (2023-02-06T16:59:25Z) - Continual Graph Learning: A Survey [4.618696834991205]
Research on continual learning (CL) mainly focuses on data represented in the Euclidean space.
Most graph learning models are tailored for static graphs.
Catastrophic forgetting also emerges in graph learning models when being trained incrementally.
arXiv Detail & Related papers (2023-01-28T15:42:49Z) - Few-Shot Learning on Graphs: A Survey [92.47605211946149]
Graph representation learning has attracted tremendous attention due to its remarkable performance in many real-world applications.
semi-supervised graph representation learning models for specific tasks often suffer from label sparsity issue.
Few-shot learning on graphs (FSLG) has been proposed to tackle the performance degradation in face of limited annotated data challenge.
arXiv Detail & Related papers (2022-03-17T13:21:11Z) - Data Augmentation for Deep Graph Learning: A Survey [66.04015540536027]
We first propose a taxonomy for graph data augmentation and then provide a structured review by categorizing the related work based on the augmented information modalities.
Focusing on the two challenging problems in DGL (i.e., optimal graph learning and low-resource graph learning), we also discuss and review the existing learning paradigms which are based on graph data augmentation.
arXiv Detail & Related papers (2022-02-16T18:30:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.