論文の概要: Multi-Sample Consensus Driven Unsupervised Normal Estimation for 3D
Point Clouds
- arxiv url: http://arxiv.org/abs/2304.04884v1
- Date: Mon, 10 Apr 2023 22:11:13 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-12 16:45:22.236679
- Title: Multi-Sample Consensus Driven Unsupervised Normal Estimation for 3D
Point Clouds
- Title(参考訳): マルチサンプル合意駆動型3次元点雲の教師なし正規推定
- Authors: Jie Zhang, Minghui Nie, Junjie Cao, Jian Liu, and Ligang Liu
- Abstract要約: MSUNEとMSUNE-Netの2つの主要な実装が提案されている。
MSUNEはモード決定における候補コンセンサス損失を最小限にする。
MSUNE-Netは、我々の知る限り、初めての教師なし深部正規分布推定器であり、マルチサンプルのコンセンサスを著しく促進する。
- 参考スコア(独自算出の注目度): 21.669489816325754
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Deep normal estimators have made great strides on synthetic benchmarks.
Unfortunately, their performance dramatically drops on the real scan data since
they are supervised only on synthetic datasets. The point-wise annotation of
ground truth normals is vulnerable to inefficiency and inaccuracies, which
totally makes it impossible to build perfect real datasets for supervised deep
learning. To overcome the challenge, we propose a multi-sample consensus
paradigm for unsupervised normal estimation. The paradigm consists of
multi-candidate sampling, candidate rejection, and mode determination. The
latter two are driven by neighbor point consensus and candidate consensus
respectively. Two primary implementations of the paradigm, MSUNE and MSUNE-Net,
are proposed. MSUNE minimizes a candidate consensus loss in mode determination.
As a robust optimization method, it outperforms the cutting-edge supervised
deep learning methods on real data at the cost of longer runtime for sampling
enough candidate normals for each query point. MSUNE-Net, the first
unsupervised deep normal estimator as far as we know, significantly promotes
the multi-sample consensus further. It transfers the three online stages of
MSUNE to offline training. Thereby its inference time is 100 times faster.
Besides that, more accurate inference is achieved, since the candidates of
query points from similar patches can form a sufficiently large candidate set
implicitly in MSUNE-Net. Comprehensive experiments demonstrate that the two
proposed unsupervised methods are noticeably superior to some supervised deep
normal estimators on the most common synthetic dataset. More importantly, they
show better generalization ability and outperform all the SOTA conventional and
deep methods on three real datasets: NYUV2, KITTI, and a dataset from PCV [1].
- Abstract(参考訳): ディープノーマル推定器は、合成ベンチマークで大きな進歩を遂げた。
残念ながら、それらのパフォーマンスは、合成データセットのみに監督されるため、実際のスキャンデータに劇的に低下する。
基底真理正規表現のポイント単位でのアノテーションは、非効率性や不正確性に弱いため、教師付きディープラーニングのための完璧な実データセットの構築は不可能である。
この課題を克服するために,教師なし正規推定のためのマルチサンプルコンセンサスパラダイムを提案する。
パラダイムは多候補サンプリング、候補拒否、モード決定で構成される。
後者の2つは、それぞれ隣接点コンセンサスと候補コンセンサスによって駆動される。
MSUNEとMSUNE-Netの2つの主要な実装が提案されている。
MSUNEはモード決定における候補コンセンサス損失を最小限にする。
頑健な最適化手法として,各問合せ点に対して十分な候補正規化をサンプリングする長寿命ランタイムのコストで,実データに対する最先端教師付き深層学習手法を上回っている。
MSUNE-Netは、我々の知る限り、初めての教師なし深部正規分布推定器であり、マルチサンプルのコンセンサスをさらに促進している。
MSUNEの3つのオンラインステージをオフライントレーニングに転送する。
したがって、その推論時間は100倍高速である。
さらに、類似パッチからのクエリポイントの候補は、MSUNE-Netで暗黙的に十分に大きな候補セットを形成することができるため、より正確な推論が達成される。
包括的実験により、提案された2つの教師なし手法は、最も一般的な合成データセット上の教師付き深部正規推定器よりも顕著に優れていることが示されている。
さらに重要なことは、これらはより優れた一般化能力を示し、3つの実際のデータセット(NYUV2、KITTI、PCV [1])でSOTAの従来のメソッドとディープメソッドをすべて上回る。
関連論文リスト
- Debiased Recommendation with Noisy Feedback [41.38490962524047]
収集データ中のMNARとOMEから予測モデルの非バイアス学習に対する交差点脅威について検討する。
まず, OME-EIB, OME-IPS, OME-DR推定器を設計する。
論文 参考訳(メタデータ) (2024-06-24T23:42:18Z) - Minimally Supervised Learning using Topological Projections in
Self-Organizing Maps [55.31182147885694]
自己組織化マップ(SOM)におけるトポロジカルプロジェクションに基づく半教師付き学習手法を提案する。
提案手法は,まずラベル付きデータ上でSOMを訓練し,最小限のラベル付きデータポイントをキーベストマッチングユニット(BMU)に割り当てる。
提案した最小教師付きモデルが従来の回帰手法を大幅に上回ることを示す。
論文 参考訳(メタデータ) (2024-01-12T22:51:48Z) - Large-scale Fully-Unsupervised Re-Identification [78.47108158030213]
大規模未ラベルデータから学ぶための2つの戦略を提案する。
第1の戦略は、近傍関係に違反することなく、それぞれのデータセットサイズを減らすために、局所的な近傍サンプリングを行う。
第2の戦略は、低時間上限の複雑さを持ち、メモリの複雑さを O(n2) から O(kn) に k n で還元する新しい再帰的手法を利用する。
論文 参考訳(メタデータ) (2023-07-26T16:19:19Z) - Evaluating Graph Neural Networks for Link Prediction: Current Pitfalls
and New Benchmarking [66.83273589348758]
リンク予測は、グラフのエッジの一部のみに基づいて、目に見えないエッジが存在するかどうかを予測しようとする。
近年,この課題にグラフニューラルネットワーク(GNN)を活用すべく,一連の手法が導入されている。
これらの新しいモデルの有効性をよりよく評価するために、新しい多様なデータセットも作成されている。
論文 参考訳(メタデータ) (2023-06-18T01:58:59Z) - AnoRand: A Semi Supervised Deep Learning Anomaly Detection Method by
Random Labeling [0.0]
異常検出(英: Anomaly detection)またはより一般的には異常検出(英: outliers detection)は、理論的および応用機械学習において最も人気があり、課題の1つである。
我々は、ディープラーニングアーキテクチャとランダムな合成ラベル生成を組み合わせることで、textbfAnoRandと呼ばれる新しい半教師付き異常検出手法を提案する。
論文 参考訳(メタデータ) (2023-05-28T10:53:34Z) - Unsupervised Model Selection for Time-series Anomaly Detection [7.8027110514393785]
提案手法は, 予測誤差, モデル中心性, および, 注入された合成異常に対する性能の3種類のサロゲート(教師なし)メトリクスを同定する。
我々は、厳密なランク集約問題として、複数の不完全なサロゲート指標との計量結合を定式化する。
複数の実世界のデータセットに対する大規模な実験は、我々の提案した教師なしアプローチが、最も正確なモデルを選択するのと同じくらい効果的であることを示す。
論文 参考訳(メタデータ) (2022-10-03T16:49:30Z) - Towards Automated Imbalanced Learning with Deep Hierarchical
Reinforcement Learning [57.163525407022966]
不均衡学習はデータマイニングにおいて基本的な課題であり、各クラスにトレーニングサンプルの不均等な比率が存在する。
オーバーサンプリングは、少数民族のための合成サンプルを生成することによって、不均衡な学習に取り組む効果的な手法である。
我々は,異なるレベルの意思決定を共同で最適化できる自動オーバーサンプリングアルゴリズムであるAutoSMOTEを提案する。
論文 参考訳(メタデータ) (2022-08-26T04:28:01Z) - Smooth densities and generative modeling with unsupervised random
forests [1.433758865948252]
密度推定器の重要な応用は合成データ生成である。
パラメータ制約を伴わない任意の次元における滑らかな密度を推定するための,教師なしランダム森林に基づく新しい手法を提案する。
提案手法の整合性を証明し,既存の木質密度推定器に対する利点を実証する。
論文 参考訳(メタデータ) (2022-05-19T09:50:25Z) - Noise-Resistant Deep Metric Learning with Probabilistic Instance
Filtering [59.286567680389766]
ノイズラベルは現実世界のデータによく見られ、ディープニューラルネットワークの性能劣化を引き起こす。
DMLのための確率的ランク付けに基づくメモリを用いたインスタンス選択(PRISM)手法を提案する。
PRISMはラベルがクリーンである確率を計算し、潜在的にノイズの多いサンプルをフィルタリングする。
論文 参考訳(メタデータ) (2021-08-03T12:15:25Z) - SuctionNet-1Billion: A Large-Scale Benchmark for Suction Grasping [47.221326169627666]
吸引つかみのシール形成とレンチ抵抗を解析的に評価する新しい物理モデルを提案する。
現実世界の混乱したシナリオで収集された大規模データセットにアノテーションを生成するために、2段階の手法が採用されている。
連続運転空間における吸入ポーズを評価するための標準オンライン評価システムを提案する。
論文 参考訳(メタデータ) (2021-03-23T05:02:52Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
数ショットのメトリックベースのアプローチのための一般的なトランスダクティブ推論手法は、最も確実なクエリ例の平均で、各クラスのプロトタイプを更新することである。
本稿では,各クエリの信頼度をメタラーニングして,ラベルのないクエリに最適な重みを割り当てる手法を提案する。
4つのベンチマークデータセットに対してメタ学習の信頼度で、少数ショットの学習モデルを検証した。
論文 参考訳(メタデータ) (2020-02-27T10:22:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。