論文の概要: OCMG-Net: Neural Oriented Normal Refinement for Unstructured Point Clouds
- arxiv url: http://arxiv.org/abs/2409.01100v1
- Date: Mon, 2 Sep 2024 09:30:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 07:26:52.411426
- Title: OCMG-Net: Neural Oriented Normal Refinement for Unstructured Point Clouds
- Title(参考訳): OCMG-Net:非構造点雲のニューラル配向正規化
- Authors: Yingrui Wu, Mingyang Zhao, Weize Quan, Jian Shi, Xiaohong Jia, Dong-Ming Yan,
- Abstract要約: 非構造点雲から指向性正規項を推定するための頑健な精錬法を提案する。
我々のフレームワークは、初期指向の正規性を洗練させるために、特徴空間に符号配向とデータ拡張を組み込んでいる。
従来手法に存在した騒音による方向の不整合の問題に対処するため, チャンファー正規距離と呼ばれる新しい指標を導入する。
- 参考スコア(独自算出の注目度): 18.234146052486054
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a robust refinement method for estimating oriented normals from unstructured point clouds. In contrast to previous approaches that either suffer from high computational complexity or fail to achieve desirable accuracy, our novel framework incorporates sign orientation and data augmentation in the feature space to refine the initial oriented normals, striking a balance between efficiency and accuracy. To address the issue of noise-caused direction inconsistency existing in previous approaches, we introduce a new metric called the Chamfer Normal Distance, which faithfully minimizes the estimation error by correcting the annotated normal with the closest point found on the potentially clean point cloud. This metric not only tackles the challenge but also aids in network training and significantly enhances network robustness against noise. Moreover, we propose an innovative dual-parallel architecture that integrates Multi-scale Local Feature Aggregation and Hierarchical Geometric Information Fusion, which enables the network to capture intricate geometric details more effectively and notably reduces ambiguity in scale selection. Extensive experiments demonstrate the superiority and versatility of our method in both unoriented and oriented normal estimation tasks across synthetic and real-world datasets among indoor and outdoor scenarios. The code is available at https://github.com/YingruiWoo/OCMG-Net.git.
- Abstract(参考訳): 非構造点雲から指向性正規項を推定するための頑健な精錬法を提案する。
計算の複雑さに悩まされたり、望ましい精度を達成できなかった従来の手法とは対照的に、我々の新しいフレームワークは、特徴空間に手話方向とデータ拡張を取り入れ、初期指向の正規性を洗練させ、効率と精度のバランスを損なう。
従来の手法ではノイズによる方向の不整合の問題に対処するため,クリーンな点の雲に最も近い点でアノテートされた正規を補正することにより,推定誤差を忠実に最小化する,Chamfer Normal Distanceと呼ばれる新しい指標を導入する。
このメトリクスは、課題に取り組むだけでなく、ネットワークトレーニングを支援し、ノイズに対するネットワークの堅牢性を大幅に向上させる。
さらに,マルチスケールな局所的特徴集約と階層的幾何情報融合を統合し,複雑な幾何学的詳細をより効果的に捕捉し,スケール選択のあいまいさを顕著に低減する,革新的なデュアル並列アーキテクチャを提案する。
室内および屋外シナリオ間の合成および実世界のデータセット間の非指向性および指向性正規推定タスクにおいて,本手法の優位性と汎用性を示す。
コードはhttps://github.com/YingruiWoo/OCMG-Net.gitで公開されている。
関連論文リスト
- Adaptive Anomaly Detection in Network Flows with Low-Rank Tensor Decompositions and Deep Unrolling [9.20186865054847]
異常検出(AD)は、将来の通信システムのレジリエンスを確保するための重要な要素として、ますます認識されている。
この研究は、不完全測定を用いたネットワークフローにおけるADについて考察する。
本稿では,正規化モデル適合性に基づくブロック帰属凸近似アルゴリズムを提案する。
ベイズ的アプローチに触発されて、我々はモデルアーキテクチャを拡張し、フローごとのオンライン適応とステップごとの統計処理を行う。
論文 参考訳(メタデータ) (2024-09-17T19:59:57Z) - Fast Point Cloud Geometry Compression with Context-based Residual Coding and INR-based Refinement [19.575833741231953]
我々は、KNN法を用いて、原表面点の近傍を決定する。
条件付き確率モデルは局所幾何学に適応し、大きな速度減少をもたらす。
暗黙のニューラル表現を精製層に組み込むことで、デコーダは任意の密度で下面の点をサンプリングすることができる。
論文 参考訳(メタデータ) (2024-08-06T05:24:06Z) - Asymmetrical Siamese Network for Point Clouds Normal Estimation [13.826173253686726]
本稿では、非対称なシームズネットワークアーキテクチャを用いて、クリーンでノイズの多い点群から学習した本質的な特徴の一貫性について検討する。
異なる枝から抽出された特徴間の合理的な制約を適用することにより、正規推定の品質を高める。
ノイズレベルの異なる様々な形状を含む新しい多視点正規推定データセットを提案する。
論文 参考訳(メタデータ) (2024-06-14T03:07:23Z) - CMG-Net: Robust Normal Estimation for Point Clouds via Chamfer Normal
Distance and Multi-scale Geometry [23.86650228464599]
この研究は、点雲から正規度を推定するための正確で堅牢な方法を示す。
まず,この問題に対処するため,シャンファー正規距離(Chamfer Normal Distance)と呼ばれる新しい尺度を提案する。
マルチスケールな局所的特徴集約と階層的幾何情報融合を含む革新的なアーキテクチャを考案する。
論文 参考訳(メタデータ) (2023-12-14T17:23:16Z) - NeuralGF: Unsupervised Point Normal Estimation by Learning Neural
Gradient Function [55.86697795177619]
3次元点雲の正規推定は3次元幾何処理の基本的な課題である。
我々は,ニューラルネットワークが入力点雲に適合することを奨励する,ニューラルグラデーション関数の学習のための新しいパラダイムを導入する。
広範に使用されているベンチマークの優れた結果から,本手法は非指向性および指向性正常推定タスクにおいて,より正確な正規性を学習できることが示されている。
論文 参考訳(メタデータ) (2023-11-01T09:25:29Z) - Vanishing Point Estimation in Uncalibrated Images with Prior Gravity
Direction [82.72686460985297]
我々はマンハッタンのフレームを推定する問題に取り組む。
2つの新しい2行解法が導出され、そのうちの1つは既存の解法に影響を与える特異点に悩まされない。
また、局所最適化の性能を高めるために、任意の行で実行される新しい最小でないメソッドを設計する。
論文 参考訳(メタデータ) (2023-08-21T13:03:25Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
本稿では,粗粒度パイプラインと特徴模倣学習に基づく小型物体検出に適した2段階フレームワークを提案する。
CFINetは、大規模な小さなオブジェクト検出ベンチマークであるSODA-DとSODA-Aで最先端の性能を達成する。
論文 参考訳(メタデータ) (2023-08-18T13:13:09Z) - Learning Signed Hyper Surfaces for Oriented Point Cloud Normal Estimation [53.19926259132379]
我々は,符号付きハイパー曲面の学習による点雲の向きの正規分布推定のためのSHS-Netと呼ばれる新しい手法を提案する。
符号付き超曲面は、局所的および大域的な情報を集約する高次元特徴空間において暗黙的に学習される。
注意重み付き正規予測モジュールをデコーダとして提案し,局所およびグローバル潜時符号を入力として向きの正規を推定する。
論文 参考訳(メタデータ) (2023-05-10T03:40:25Z) - AdaFit: Rethinking Learning-based Normal Estimation on Point Clouds [31.641383879577894]
本稿では,AdaFit という,雑音と密度の変動を伴う点雲に対処可能な,点雲上でのロバストな正規推定のためのニューラルネットワークを提案する。
既存の研究では、ネットワークを用いて最小表面の重み付けの点での重みを学習し、正規性を推定している。
そこで本研究では,通常の推定精度を向上させるために,新たなオフセット予測を付加する,シンプルで効果的な解を提案する。
論文 参考訳(メタデータ) (2021-08-12T16:37:24Z) - Deep Magnification-Flexible Upsampling over 3D Point Clouds [103.09504572409449]
本稿では,高密度点雲を生成するためのエンドツーエンド学習ベースのフレームワークを提案する。
まずこの問題を明示的に定式化し、重みと高次近似誤差を判定する。
そこで我々は,高次改良とともに,統一重みとソート重みを適応的に学習する軽量ニューラルネットワークを設計する。
論文 参考訳(メタデータ) (2020-11-25T14:00:18Z) - Optimizing Mode Connectivity via Neuron Alignment [84.26606622400423]
経験的に、損失関数の局所ミニマは、損失がほぼ一定であるようなモデル空間の学習曲線で接続することができる。
本稿では,ネットワークの重み変化を考慮し,対称性がランドスケープ・コネクティビティに与える影響を明らかにするための,より一般的な枠組みを提案する。
論文 参考訳(メタデータ) (2020-09-05T02:25:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。