論文の概要: PointNorm-Net: Self-Supervised Normal Prediction of 3D Point Clouds via Multi-Modal Distribution Estimation
- arxiv url: http://arxiv.org/abs/2304.04884v2
- Date: Wed, 09 Apr 2025 11:21:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-10 16:14:35.079183
- Title: PointNorm-Net: Self-Supervised Normal Prediction of 3D Point Clouds via Multi-Modal Distribution Estimation
- Title(参考訳): PointNorm-Net:マルチモーダル分布推定による3次元点雲の自己監督正規予測
- Authors: Jie Zhang, Minghui Nie, Changqing Zou, Jian Liu, Ligang Liu, Junjie Cao,
- Abstract要約: PointNorm-Netは、この課題に対処する最初の自己教師型ディープラーニングフレームワークである。
提案手法は,3つの実世界のデータセットにまたがって,最先端の従来型および深層学習手法より優れた一般化と性能を実現する。
- 参考スコア(独自算出の注目度): 29.582507073730913
- License:
- Abstract: Although supervised deep normal estimators have recently shown impressive results on synthetic benchmarks, their performance deteriorates significantly in real-world scenarios due to the domain gap between synthetic and real data. Building high-quality real training data to boost those supervised methods is not trivial because point-wise annotation of normals for varying-scale real-world 3D scenes is a tedious and expensive task. This paper introduces PointNorm-Net, the first self-supervised deep learning framework to tackle this challenge. The key novelty of PointNorm-Net is a three-stage multi-modal normal distribution estimation paradigm that can be integrated into either deep or traditional optimization-based normal estimation frameworks. Extensive experiments show that our method achieves superior generalization and outperforms state-of-the-art conventional and deep learning approaches across three real-world datasets that exhibit distinct characteristics compared to the synthetic training data.
- Abstract(参考訳): 教師付き深部正規分布推定器は、最近、合成ベンチマークにおいて顕著な結果を示したが、それらの性能は、合成データと実際のデータのドメインギャップにより、現実のシナリオで著しく低下した。
様々なスケールの現実世界の3Dシーンに対する正常な点のアノテーションは、面倒で高価な作業なので、教師付き手法を強化するための高品質なリアルトレーニングデータを構築するのは簡単ではない。
本稿では,この課題に対処する最初の自己教師型ディープラーニングフレームワークであるPointNorm-Netを紹介する。
PointNorm-Netの重要な特徴は、3段階のマルチモーダル正規分布推定パラダイムであり、ディープまたは従来の最適化ベースの正規分布推定フレームワークに統合することができる。
大規模な実験により,本手法はより優れた一般化を実現し,合成学習データと異なる特徴を示す3つの実世界のデータセットにまたがる最先端および深層学習アプローチより優れることが示された。
関連論文リスト
- Physics-Driven Self-Supervised Deep Learning for Free-Surface Multiple Elimination [3.3244277562036095]
物理物理学において、ディープラーニング(Deep Learning, DL)法は、一般に大量の高品質ラベル付きデータからの教師付き学習に基づいている。
本稿では,損失計算に基礎となる物理を組み込んで,自由表面多重自由波動場をフルウェーブフィールドから効果的にパラメータ化する方法を提案する。
これにより、根拠となる真理データを示すことなく、高品質な推定値が得られる。
論文 参考訳(メタデータ) (2025-01-26T15:37:23Z) - Debiased Recommendation with Noisy Feedback [41.38490962524047]
収集データ中のMNARとOMEから予測モデルの非バイアス学習に対する交差点脅威について検討する。
まず, OME-EIB, OME-IPS, OME-DR推定器を設計する。
論文 参考訳(メタデータ) (2024-06-24T23:42:18Z) - Minimally Supervised Learning using Topological Projections in
Self-Organizing Maps [55.31182147885694]
自己組織化マップ(SOM)におけるトポロジカルプロジェクションに基づく半教師付き学習手法を提案する。
提案手法は,まずラベル付きデータ上でSOMを訓練し,最小限のラベル付きデータポイントをキーベストマッチングユニット(BMU)に割り当てる。
提案した最小教師付きモデルが従来の回帰手法を大幅に上回ることを示す。
論文 参考訳(メタデータ) (2024-01-12T22:51:48Z) - Large-scale Fully-Unsupervised Re-Identification [78.47108158030213]
大規模未ラベルデータから学ぶための2つの戦略を提案する。
第1の戦略は、近傍関係に違反することなく、それぞれのデータセットサイズを減らすために、局所的な近傍サンプリングを行う。
第2の戦略は、低時間上限の複雑さを持ち、メモリの複雑さを O(n2) から O(kn) に k n で還元する新しい再帰的手法を利用する。
論文 参考訳(メタデータ) (2023-07-26T16:19:19Z) - Evaluating Graph Neural Networks for Link Prediction: Current Pitfalls
and New Benchmarking [66.83273589348758]
リンク予測は、グラフのエッジの一部のみに基づいて、目に見えないエッジが存在するかどうかを予測しようとする。
近年,この課題にグラフニューラルネットワーク(GNN)を活用すべく,一連の手法が導入されている。
これらの新しいモデルの有効性をよりよく評価するために、新しい多様なデータセットも作成されている。
論文 参考訳(メタデータ) (2023-06-18T01:58:59Z) - AnoRand: A Semi Supervised Deep Learning Anomaly Detection Method by
Random Labeling [0.0]
異常検出(英: Anomaly detection)またはより一般的には異常検出(英: outliers detection)は、理論的および応用機械学習において最も人気があり、課題の1つである。
我々は、ディープラーニングアーキテクチャとランダムな合成ラベル生成を組み合わせることで、textbfAnoRandと呼ばれる新しい半教師付き異常検出手法を提案する。
論文 参考訳(メタデータ) (2023-05-28T10:53:34Z) - Unsupervised Model Selection for Time-series Anomaly Detection [7.8027110514393785]
提案手法は, 予測誤差, モデル中心性, および, 注入された合成異常に対する性能の3種類のサロゲート(教師なし)メトリクスを同定する。
我々は、厳密なランク集約問題として、複数の不完全なサロゲート指標との計量結合を定式化する。
複数の実世界のデータセットに対する大規模な実験は、我々の提案した教師なしアプローチが、最も正確なモデルを選択するのと同じくらい効果的であることを示す。
論文 参考訳(メタデータ) (2022-10-03T16:49:30Z) - Towards Automated Imbalanced Learning with Deep Hierarchical
Reinforcement Learning [57.163525407022966]
不均衡学習はデータマイニングにおいて基本的な課題であり、各クラスにトレーニングサンプルの不均等な比率が存在する。
オーバーサンプリングは、少数民族のための合成サンプルを生成することによって、不均衡な学習に取り組む効果的な手法である。
我々は,異なるレベルの意思決定を共同で最適化できる自動オーバーサンプリングアルゴリズムであるAutoSMOTEを提案する。
論文 参考訳(メタデータ) (2022-08-26T04:28:01Z) - Noise-Resistant Deep Metric Learning with Probabilistic Instance
Filtering [59.286567680389766]
ノイズラベルは現実世界のデータによく見られ、ディープニューラルネットワークの性能劣化を引き起こす。
DMLのための確率的ランク付けに基づくメモリを用いたインスタンス選択(PRISM)手法を提案する。
PRISMはラベルがクリーンである確率を計算し、潜在的にノイズの多いサンプルをフィルタリングする。
論文 参考訳(メタデータ) (2021-08-03T12:15:25Z) - SuctionNet-1Billion: A Large-Scale Benchmark for Suction Grasping [47.221326169627666]
吸引つかみのシール形成とレンチ抵抗を解析的に評価する新しい物理モデルを提案する。
現実世界の混乱したシナリオで収集された大規模データセットにアノテーションを生成するために、2段階の手法が採用されている。
連続運転空間における吸入ポーズを評価するための標準オンライン評価システムを提案する。
論文 参考訳(メタデータ) (2021-03-23T05:02:52Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
数ショットのメトリックベースのアプローチのための一般的なトランスダクティブ推論手法は、最も確実なクエリ例の平均で、各クラスのプロトタイプを更新することである。
本稿では,各クエリの信頼度をメタラーニングして,ラベルのないクエリに最適な重みを割り当てる手法を提案する。
4つのベンチマークデータセットに対してメタ学習の信頼度で、少数ショットの学習モデルを検証した。
論文 参考訳(メタデータ) (2020-02-27T10:22:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。