論文の概要: Artificial Collective Intelligence Engineering: a Survey of Concepts and
Perspectives
- arxiv url: http://arxiv.org/abs/2304.05147v1
- Date: Tue, 11 Apr 2023 11:22:47 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-12 15:13:17.807290
- Title: Artificial Collective Intelligence Engineering: a Survey of Concepts and
Perspectives
- Title(参考訳): 人工知能工学 : 概念と展望の調査
- Authors: Roberto Casadei
- Abstract要約: 集団知能とは、集団が一見知的な方法で集団的に行動する能力である。
人工的および計算的集団知能は研究トピックとして認識されている。
本稿では,集団知能研究の地図を提供する広範囲なスクーピング質問について考察する。
- 参考スコア(独自算出の注目度): 1.2183405753834562
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Collectiveness is an important property of many systems--both natural and
artificial. By exploiting a large number of individuals, it is often possible
to produce effects that go far beyond the capabilities of the smartest
individuals, or even to produce intelligent collective behaviour out of
not-so-intelligent individuals. Indeed, collective intelligence, namely the
capability of a group to act collectively in a seemingly intelligent way, is
increasingly often a design goal of engineered computational systems--motivated
by recent techno-scientific trends like the Internet of Things, swarm robotics,
and crowd computing, just to name a few. For several years, the collective
intelligence observed in natural and artificial systems has served as a source
of inspiration for engineering ideas, models, and mechanisms. Today, artificial
and computational collective intelligence are recognised research topics,
spanning various techniques, kinds of target systems, and application domains.
However, there is still a lot of fragmentation in the research panorama of the
topic within computer science, and the verticality of most communities and
contributions makes it difficult to extract the core underlying ideas and
frames of reference. The challenge is to identify, place in a common structure,
and ultimately connect the different areas and methods addressing intelligent
collectives. To address this gap, this paper considers a set of broad scoping
questions providing a map of collective intelligence research, mostly by the
point of view of computer scientists and engineers. Accordingly, it covers
preliminary notions, fundamental concepts, and the main research perspectives,
identifying opportunities and challenges for researchers on artificial and
computational collective intelligence engineering.
- Abstract(参考訳): 集合性は自然と人工の両方の多くのシステムの重要な特性である。
多数の個人を搾取することで、最も賢い個人の能力をはるかに超える効果を生み出すことや、あまり知性のない個人から知的な集団行動を生み出すこともしばしば可能となる。
実際、集団知性、すなわち集団が、一見知的な方法で集団的に行動する能力は、しばしば、モノのインターネット(Internet of Things)やスウォームロボティクス(Swarm Roboticss)、クラウドコンピューティングといった最近の技術科学的トレンドに動機づけられた、エンジニアリングされた計算システムの設計目標である。
自然システムや人工システムで観測された集団知性は、エンジニアリングのアイデア、モデル、メカニズムのインスピレーションの源となっている。
今日、人工的および計算的集合知能は、様々な技術、ターゲットシステムの種類、アプリケーションドメインにまたがる研究トピックとして認識されている。
しかし、コンピュータ科学における研究のパノラマにはまだ断片化が残っており、ほとんどのコミュニティやコントリビューションの垂直性は、コアとなる考え方や参照の枠組みを抽出することを困難にしている。
課題は、共通の構造を識別し、配置し、最終的には知的集団に対処する異なる領域とメソッドを接続することである。
このギャップに対処するため,本稿では,コンピュータ科学者や技術者の観点から,集団知能研究の地図を提供する幅広い質問の組について考察する。
それゆえ、予備的な概念、基本的な概念、主要な研究の視点、人工的および計算的集団知能工学における研究者の機会と挑戦を特定する。
関連論文リスト
- Theory of Mind Enhances Collective Intelligence [1.8434042562191815]
人間の社会的設定におけるフレキシブルな集団知性は、特定の認知ツールを使用することによって改善される、と我々は主張する。
そして、これらの能力を、人間とAIのハイブリッドな社会生態学を含む未来に埋め込まれた人工知能の次のステップの文脈に配置する。
論文 参考訳(メタデータ) (2024-11-14T03:58:50Z) - SciAgents: Automating scientific discovery through multi-agent intelligent graph reasoning [0.0]
人工知能の鍵となる課題は、科学的理解を自律的に進めるシステムを作ることである。
3つのコア概念を活用するアプローチであるSciAgentsを提案する。
この枠組みは研究仮説を自律的に生成し、基礎となるメカニズム、設計原則、予期せぬ材料特性を解明する。
我々のケーススタディでは、生成AI、オントロジ表現、マルチエージェントモデリングを組み合わせて、生物学的システムに似た知能の群を活用できるスケーラブルな能力を実証している。
論文 参考訳(メタデータ) (2024-09-09T12:25:10Z) - Advancing Social Intelligence in AI Agents: Technical Challenges and Open Questions [67.60397632819202]
ソーシャルインテリジェントAIエージェント(Social-AI)の構築は、多分野、マルチモーダルな研究目標である。
我々は、社会AIを前進させるために、基礎となる技術的課題と、コンピューティングコミュニティ全体にわたる研究者のためのオープンな質問を特定します。
論文 参考訳(メタデータ) (2024-04-17T02:57:42Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
エージェントAI - 大きな基盤モデルをエージェントアクションに統合する具体的システム。
本稿では,エージェント・ファウンデーション・モデル(エージェント・ファウンデーション・モデル)を提案する。
論文 参考訳(メタデータ) (2024-02-28T16:09:56Z) - A Survey on Robotics with Foundation Models: toward Embodied AI [30.999414445286757]
近年のコンピュータビジョン,自然言語処理,マルチモーダリティ学習の進歩は,基礎モデルが特定のタスクに対して超人的能力を持つことを示している。
この調査は、ロボット工学の基礎モデルの包括的で最新の概要を提供し、自律的な操作に焦点を当て、高レベルの計画と低レベルの制御を包含することを目的としている。
論文 参考訳(メタデータ) (2024-02-04T07:55:01Z) - AI for Mathematics: A Cognitive Science Perspective [86.02346372284292]
数学は人間によって開発された最も強力な概念体系の1つである。
AIの急速な進歩、特に大規模言語モデル(LLM)の進歩による推進により、そのようなシステム構築に対する新たな、広範な関心が生まれている。
論文 参考訳(メタデータ) (2023-10-19T02:00:31Z) - A Neuro-mimetic Realization of the Common Model of Cognition via Hebbian
Learning and Free Energy Minimization [55.11642177631929]
大規模なニューラル生成モデルは、意味的に豊富なテキストのパスを合成したり、複雑な画像を生成することができる。
我々はコモン・モデル・オブ・コグニティブ・ニューラル・ジェネレーティブ・システムについて論じる。
論文 参考訳(メタデータ) (2023-10-14T23:28:48Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
機械学習とAIの最近の進歩は、技術革新、製品開発、社会全体を破壊している。
AIは、科学的な実践とモデル発見のための高品質なデータの大規模なデータセットへのアクセスがより困難であるため、基礎科学にはあまり貢献していない。
ここでは、科学的な発見に対するAI駆動、自動化、クローズドループアプローチの側面を調査し、調査する。
論文 参考訳(メタデータ) (2023-07-09T21:16:56Z) - Foundations and Recent Trends in Multimodal Machine Learning:
Principles, Challenges, and Open Questions [68.6358773622615]
本稿では,マルチモーダル機械学習の計算的基礎と理論的基礎について概説する。
本稿では,表現,アライメント,推論,生成,伝達,定量化という,6つの技術課題の分類法を提案する。
最近の技術的成果は、この分類のレンズを通して示され、研究者は新しいアプローチの類似点と相違点を理解することができる。
論文 参考訳(メタデータ) (2022-09-07T19:21:19Z) - Collective Intelligence for Deep Learning: A Survey of Recent
Developments [11.247894240593691]
我々は、複雑なシステムへのニューラルネットワーク研究の関与に関する歴史的文脈を提供する。
我々は,集合知の原理を取り入れた,現代のディープラーニング研究の活発な領域をいくつか取り上げる。
論文 参考訳(メタデータ) (2021-11-29T08:39:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。