論文の概要: Beyond Task Vectors: Selective Task Arithmetic Based on Importance Metrics
- arxiv url: http://arxiv.org/abs/2411.16139v1
- Date: Mon, 25 Nov 2024 06:59:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:19:35.415284
- Title: Beyond Task Vectors: Selective Task Arithmetic Based on Importance Metrics
- Title(参考訳): タスクベクトルを超えて: 重要度基準に基づく選択的タスク算術
- Authors: Tian Bowen, Lai Songning, Wu Jiemin, Shuai Zhihao, Ge Shiming, Yue Yutao,
- Abstract要約: 本稿では,タスク固有パラメータ融合によるマルチタスク性能向上を目的としたトレーニングフリーフレームワークであるtextbfunderlineSelective textbfunderlineTask textbfunderlineArithmetic underlinetextbf(STA)を紹介する。
実験により,STAはベンチマーク間で優れたマルチタスク性能を実現し,タスクを忘れる際の優れた性能を示した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Pretrained models have revolutionized deep learning by enabling significant performance improvements across a wide range of tasks, leveraging large-scale, pre-learned knowledge representations. However, deploying these models in real-world multi-task learning (MTL) scenarios poses substantial challenges, primarily due to high computational costs and inefficiencies in inference. Traditional approaches such as pruning, quantization, and knowledge distillation have been explored to mitigate these issues, but they often fall short in fully addressing the complexities of multi-task environments. This paper introduces \textbf{\underline{S}}elective \textbf{\underline{T}}ask \textbf{\underline{A}}rithmetic \underline{\textbf{(STA)}}, a training-free framework designed to enhance multi-task performance through task-specific parameter fusion. STA addresses three key challenges: (i) \textbf{Parameter importance diversity: } Recognizing that different tasks relie on distinct parameters, STA employs a loss-sensitive parameter importance metric derived from a first-order Taylor expansion to accurately measure the importance of parameters for each task. (ii) \textbf{Over-reliance on hyperparameter tuning: }By enhancing the sparsity of task vectors through parameter importance metrics, STA reduces the need for extensive hyperparameter tuning, thereby improving the generalization and robustness of the model. (iii) \textbf{Neglect of other abilities in task arithmetic: } Previous works have largely overlooked the potential for more precise task forgetting. STA leverages its parameter importance metric to achieve more controlled and effective task forgetting, minimizing the impact of noisy elements that can degrade model performance. Experimental results demonstrate that STA achieves superior multi-task performance across benchmarks and excellent performance in task forgetting.
- Abstract(参考訳): 事前訓練されたモデルは、大規模で学習済みの知識表現を活用することにより、幅広いタスクで大幅なパフォーマンス向上を可能にすることによって、ディープラーニングに革命をもたらした。
しかし、これらのモデルを実世界のマルチタスク学習(MTL)シナリオにデプロイすることは、主に計算コストと推論の非効率性のために重大な課題を生じさせる。
プルーニング、量子化、知識蒸留といった伝統的な手法はこれらの問題を緩和するために研究されてきたが、しばしばマルチタスク環境の複雑さに完全に対処するには不十分である。
本稿では,タスク固有パラメータ融合によるマルチタスク性能向上を目的としたトレーニングフリーフレームワークである,textbf{\underline{S}}elective \textbf{\underline{T}}ask \textbf{\underline{A}}rithmetic \underline{\textbf{(STA)}}を紹介する。
STAは3つの課題に対処する。
i) \textbf{Parameter importance diversity: } 異なるタスクが異なるパラメータに依存していることを認識し、STAは、各タスクに対するパラメータの重要性を正確に測定するために、一階のTaylor拡張から導かれる損失感受性パラメータ重要度メトリクスを使用する。
(ii) \textbf{Over-Reliance on hyperparameter tuning: }STAはパラメータ重要度によってタスクベクトルの空間性を高めることにより、広範囲なハイパーパラメータチューニングの必要性を低減し、モデルの一般化とロバスト性を向上させる。
(iii) \textbf{Neglect of other abilities in task arithmetic: } 以前の作業は、より正確なタスクを忘れる可能性をほとんど見落としていた。
STAはそのパラメータ重要度基準を利用して、より制御され効率的なタスクの忘れをし、モデル性能を劣化させるうるノイズの多い要素の影響を最小限に抑える。
実験により,STAはベンチマーク間で優れたマルチタスク性能を実現し,タスクを忘れる際の優れた性能を示した。
関連論文リスト
- Parameter-Efficient Fine-Tuning for Continual Learning: A Neural Tangent Kernel Perspective [125.00228936051657]
本稿では,タスク関連機能を適応的に生成しながら,タスク固有のパラメータ記憶を不要にする新しいフレームワークNTK-CLを紹介する。
最適化可能なパラメータを適切な正規化で微調整することにより、NTK-CLは確立されたPEFT-CLベンチマーク上で最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-07-24T09:30:04Z) - PECTP: Parameter-Efficient Cross-Task Prompts for Incremental Vision Transformer [76.39111896665585]
インクリメンタルラーニング(IL)は、シーケンシャルタスクの深いモデルを継続的に学習することを目的としている。
近年の大規模事前訓練モデル (PTM) は, 従来の試料を含まない実用ILにおいて, 即時的手法により優れた性能を発揮している。
論文 参考訳(メタデータ) (2024-07-04T10:37:58Z) - InterroGate: Learning to Share, Specialize, and Prune Representations
for Multi-task Learning [17.66308231838553]
推論計算効率を最適化しつつ,タスク干渉を緩和する新しいマルチタスク学習(MTL)アーキテクチャを提案する。
学習可能なゲーティング機構を用いて、すべてのタスクのパフォーマンスを保ちながら、共有表現とタスク固有の表現を自動的にバランスさせる。
論文 参考訳(メタデータ) (2024-02-26T18:59:52Z) - VMT-Adapter: Parameter-Efficient Transfer Learning for Multi-Task Dense
Scene Understanding [6.816428690763012]
大規模な事前訓練モデルを活用するための標準的なアプローチは、下流タスクのすべてのモデルパラメータを微調整することである。
本稿では,複数のタスクから知識を共有するVMT-Adapterを提案する。
また、ダウンプロジェクションとアッププロジェクションの間で共有パラメータを学習することで、トレーニング可能なパラメータをさらに削減するVMT-Adapter-Liteを提案する。
論文 参考訳(メタデータ) (2023-12-14T08:25:04Z) - Task Difficulty Aware Parameter Allocation & Regularization for Lifelong
Learning [20.177260510548535]
本稿では,その学習困難度に基づいてパラメータ割り当てと正規化から各タスクに適した戦略を適応的に選択するAllocation & Regularization (PAR)を提案する。
提案手法はスケーラビリティが高く,モデルの冗長性を著しく低減し,モデルの性能を向上する。
論文 参考訳(メタデータ) (2023-04-11T15:38:21Z) - AdaTask: A Task-aware Adaptive Learning Rate Approach to Multi-task
Learning [19.201899503691266]
このパラメータ上の各タスクの総更新によって、パラメータのタスク支配度を測定する。
本稿では,各タスクの強調勾配と学習率を分離するタスクワイド適応学習率アプローチであるAdaTaskを提案する。
コンピュータビジョンとレコメンダシステムMTLデータセットの実験は、AdaTaskが支配的なタスクのパフォーマンスを大幅に改善することを示した。
論文 参考訳(メタデータ) (2022-11-28T04:24:38Z) - Task Adaptive Parameter Sharing for Multi-Task Learning [114.80350786535952]
Adaptive Task Adapting Sharing(TAPS)は、階層の小さなタスク固有のサブセットを適応的に修正することで、ベースモデルを新しいタスクにチューニングする手法である。
他の手法と比較して、TAPSはダウンストリームタスクに対して高い精度を維持し、タスク固有のパラメータは少ない。
我々は,タスクやアーキテクチャ(ResNet,DenseNet,ViT)を微調整して評価し,実装が簡単でありながら最先端の性能を実現することを示す。
論文 参考訳(メタデータ) (2022-03-30T23:16:07Z) - SUPERB-SG: Enhanced Speech processing Universal PERformance Benchmark
for Semantic and Generative Capabilities [76.97949110580703]
各種音声タスクの事前学習モデルを評価するための新しいベンチマークであるSUPERB-SGを紹介する。
データドメインのシフトの下で、事前訓練されたモデルによって学習された表現の堅牢性をテストするために、軽量な方法論を使用します。
また,SUPERB-SGのタスク多様性とタスク監督の限定が,モデル表現の一般化性を評価する効果的な方法であることを示す。
論文 参考訳(メタデータ) (2022-03-14T04:26:40Z) - Variational Multi-Task Learning with Gumbel-Softmax Priors [105.22406384964144]
マルチタスク学習は、タスク関連性を探究し、個々のタスクを改善することを目的としている。
本稿では,複数のタスクを学習するための一般的な確率的推論フレームワークである変分マルチタスク学習(VMTL)を提案する。
論文 参考訳(メタデータ) (2021-11-09T18:49:45Z) - Reparameterizing Convolutions for Incremental Multi-Task Learning
without Task Interference [75.95287293847697]
マルチタスクモデルを開発する際の2つの一般的な課題は、しばしば文献で見過ごされる。
まず、モデルを本質的に漸進的に可能にし、以前に学んだことを忘れずに新しいタスクから情報を継続的に取り入れる(インクリメンタルラーニング)。
第二に、タスク間の有害な相互作用を排除し、マルチタスク設定(タスク干渉)においてシングルタスクのパフォーマンスを著しく低下させることが示されている。
論文 参考訳(メタデータ) (2020-07-24T14:44:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。