論文の概要: Optimizing Data-driven Causal Discovery Using Knowledge-guided Search
- arxiv url: http://arxiv.org/abs/2304.05493v2
- Date: Mon, 8 Jul 2024 14:54:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-10 03:48:51.327339
- Title: Optimizing Data-driven Causal Discovery Using Knowledge-guided Search
- Title(参考訳): 知識誘導探索によるデータ駆動因果探索の最適化
- Authors: Uzma Hasan, Md Osman Gani,
- Abstract要約: 本研究では,知識誘導型因果構造探索(KGS)手法を提案する。
人工的およびベンチマーク的実世界のデータセットを用いて、KGSを複数の環境で評価し、また、酸素治療に関する実生活医療アプリケーションで評価した。
- 参考スコア(独自算出の注目度): 3.7489744097107316
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learning causal relationships solely from observational data often fails to reveal the underlying causal mechanisms due to the vast search space of possible causal graphs, which can grow exponentially, especially for greedy algorithms using score-based approaches. Leveraging prior causal information, such as the presence or absence of causal edges, can help restrict and guide the score-based discovery process, leading to a more accurate search. In the healthcare domain, prior knowledge is abundant from sources like medical journals, electronic health records (EHRs), and clinical intervention outcomes. This study introduces a knowledge-guided causal structure search (KGS) approach that utilizes observational data and structural priors (such as causal edges) as constraints to learn the causal graph. KGS leverages prior edge information between variables, including the presence of a directed edge, the absence of an edge, and the presence of an undirected edge. We extensively evaluate KGS in multiple settings using synthetic and benchmark real-world datasets, as well as in a real-life healthcare application related to oxygen therapy treatment. To obtain causal priors, we use GPT-4 to retrieve relevant literature information. Our results show that structural priors of any type and amount enhance the search process, improving performance and optimizing causal discovery. This guided strategy ensures that the discovered edges align with established causal knowledge, enhancing the trustworthiness of findings while expediting the search process. It also enables a more focused exploration of causal mechanisms, potentially leading to more effective and personalized healthcare solutions.
- Abstract(参考訳): 観測データのみから因果関係を学習することは、因果グラフの巨大な探索空間による根底にある因果機構を明らかにするのに失敗することが多い。
因果的エッジの存在や欠如などの事前因果的情報を活用することは、スコアベースの発見プロセスを制限し、ガイドし、より正確な探索につながる。
医療分野では、医学雑誌、電子健康記録(EHR)、臨床介入結果などの情報源から事前知識が豊富である。
本研究では、因果グラフを学習するための制約として、観測データと構造先行(因果エッジなど)を利用する知識誘導因果構造探索(KGS)手法を提案する。
KGSは、有向エッジの存在、エッジの欠如、無向エッジの存在など、変数間の事前のエッジ情報を活用する。
人工的およびベンチマーク的実世界のデータセットを用いて、KGSを複数の環境で評価し、また、酸素治療に関する実生活医療アプリケーションで評価した。
因果的先行情報を得るためには,GPT-4を用いて関連する文献情報を検索する。
以上の結果から,任意の種類の構造的先行が探索プロセスの促進,性能の向上,因果発見の最適化を図っている。
このガイドされた戦略は、発見されたエッジが確立された因果知識と一致し、探索プロセスを迅速化しつつ、発見の信頼性を高める。
また、因果メカニズムのより集中的な探索を可能にし、より効果的でパーソナライズされた医療ソリューションにつながる可能性がある。
関連論文リスト
- Discovery of the Hidden World with Large Language Models [100.38157787218044]
COAT: Causal representatiOn AssistanTについて紹介する。
COATは、非構造化データから潜在的な因果因子を抽出する因子プロジェクタとしてLLMを組み込んでいる。
LLMはデータ値の収集に使用される追加情報を提供するよう指示することもできる。
論文 参考訳(メタデータ) (2024-02-06T12:18:54Z) - Multi-modal Causal Structure Learning and Root Cause Analysis [67.67578590390907]
根本原因局所化のためのマルチモーダル因果構造学習手法であるMulanを提案する。
ログ選択言語モデルを利用してログ表現学習を行い、ログシーケンスを時系列データに変換する。
また、モダリティの信頼性を評価し、最終因果グラフを共同学習するための新しいキーパフォーマンスインジケータ対応アテンション機構も導入する。
論文 参考訳(メタデータ) (2024-02-04T05:50:38Z) - CORE: Towards Scalable and Efficient Causal Discovery with Reinforcement
Learning [2.7446241148152253]
COREは、因果発見と介入計画のための強化学習に基づくアプローチである。
その結果,COREは未知のグラフに一般化し,因果構造を効率的に発見できることがわかった。
COREは最大10変数のグラフにスケールし、構造推定精度とサンプル効率において既存のアプローチより優れている。
論文 参考訳(メタデータ) (2024-01-30T12:57:52Z) - Applying Large Language Models for Causal Structure Learning in Non
Small Cell Lung Cancer [8.248361703850774]
因果発見は、医療AI研究において重要な役割を担っている。
本稿では,大言語モデルを用いて,因果発見におけるエッジの方向性を決定する問題について検討する。
その結果,LLMは因果グラフのエッジの方向を正確に予測でき,既存の最先端手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-11-13T09:31:14Z) - Discovering Dynamic Causal Space for DAG Structure Learning [64.763763417533]
本稿では,DAG構造学習のための動的因果空間であるCASPERを提案する。
グラフ構造をスコア関数に統合し、因果空間における新しい尺度として、推定真理DAGと基底真理DAGの因果距離を忠実に反映する。
論文 参考訳(メタデータ) (2023-06-05T12:20:40Z) - Deep Reinforcement Learning Framework for Thoracic Diseases
Classification via Prior Knowledge Guidance [49.87607548975686]
関連疾患に対するラベル付きデータの不足は、正確な診断にとって大きな課題となる。
本稿では,診断エージェントの学習を指導するための事前知識を導入する,新しい深層強化学習フレームワークを提案する。
提案手法の性能はNIHX-ray 14とCheXpertデータセットを用いて実証した。
論文 参考訳(メタデータ) (2023-06-02T01:46:31Z) - The Impact of Missing Data on Causal Discovery: A Multicentric Clinical
Study [1.173358409934101]
子宮内膜癌に対する多施設共同研究から得られたデータを用いて,検索した因果グラフに異なる欠損機構が与える影響を解析した。
専門医による回復グラフの検証を行い,本手法が臨床関連ソリューションを見いだすことを示す。
論文 参考訳(メタデータ) (2023-05-17T08:46:30Z) - Learning domain-specific causal discovery from time series [7.298647409503783]
時間変化データからの因果発見は神経科学、医学、機械学習において重要である。
人間の専門知識は必ずしも正確ではなく、豊富なデータを持つ領域では優れる傾向がある。
本研究では,データ駆動手法を用いて時系列のドメイン固有因果探索を向上できるかを検討する。
論文 参考訳(メタデータ) (2022-09-12T20:32:39Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
本稿では,データ生成プロセスの根底にある因果構造を素早く識別する能動的介入ターゲット機構を提案する。
本手法は,ランダムな介入ターゲティングと比較して,要求される対話回数を大幅に削減する。
シミュレーションデータから実世界のデータまで,複数のベンチマークにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2021-09-06T13:10:37Z) - Exploring and Distilling Posterior and Prior Knowledge for Radiology
Report Generation [55.00308939833555]
PPKEDには、Posterior Knowledge Explorer (PoKE), Prior Knowledge Explorer (PrKE), Multi-domain Knowledge Distiller (MKD)の3つのモジュールが含まれている。
PoKEは後部知識を探求し、視覚データのバイアスを軽減するために明確な異常な視覚領域を提供する。
PrKEは、以前の医学知識グラフ(医学知識)と以前の放射線学レポート(作業経験)から以前の知識を探り、テキストデータのバイアスを軽減する。
論文 参考訳(メタデータ) (2021-06-13T11:10:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。