論文の概要: Self Optimisation and Automatic Code Generation by Evolutionary
Algorithms in PLC based Controlling Processes
- arxiv url: http://arxiv.org/abs/2304.05638v1
- Date: Wed, 12 Apr 2023 06:36:54 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-13 15:58:25.478180
- Title: Self Optimisation and Automatic Code Generation by Evolutionary
Algorithms in PLC based Controlling Processes
- Title(参考訳): PLCに基づく制御プロセスにおける進化的アルゴリズムによる自己最適化と自動コード生成
- Authors: Marlon L\"oppenberg and Andreas Schwung
- Abstract要約: 複雑なプロセスのシステム論理を自己最適化するために,進化的アルゴリズムに基づく新しいアプローチを提案する。
提案手法は,多目的問題を考慮した産業用液体ステーションプロセスで評価する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The digital transformation of automation places new demands on data
acquisition and processing in industrial processes. Logical relationships
between acquired data and cyclic process sequences must be correctly
interpreted and evaluated. To solve this problem, a novel approach based on
evolutionary algorithms is proposed to self optimise the system logic of
complex processes. Based on the genetic results, a programme code for the
system implementation is derived by decoding the solution. This is achieved by
a flexible system structure with an upstream, intermediate and downstream unit.
In the intermediate unit, a directed learning process interacts with a system
replica and an evaluation function in a closed loop. The code generation
strategy is represented by redundancy and priority, sequencing and performance
derivation. The presented approach is evaluated on an industrial liquid station
process subject to a multi-objective optimisation problem.
- Abstract(参考訳): 自動化のデジタルトランスフォーメーションは、産業プロセスにおけるデータ取得と処理に新たな要求をもたらす。
得られたデータと循環プロセスシーケンスの論理的関係を正しく解釈し、評価する必要がある。
この問題を解決するために、複雑なプロセスのシステム論理を自己最適化するために、進化的アルゴリズムに基づく新しいアプローチを提案する。
遺伝的結果に基づいて、システム実装のためのプログラムコードを解を復号化して導出する。
これは上流、中間、下流のユニットを備えた柔軟なシステム構造によって実現される。
中間単位において、指示学習プロセスは、閉ループ内のシステムレプリカと評価関数とを相互作用する。
コード生成戦略は冗長性と優先度、シーケンシング、パフォーマンスの導出によって表される。
提案手法は,多目的最適化問題を考慮した産業用液体ステーションプロセスで評価する。
関連論文リスト
- The Artificial Neural Twin -- Process Optimization and Continual Learning in Distributed Process Chains [3.79770624632814]
本稿では,モデル予測制御,ディープラーニング,センサネットワークの概念を組み合わせた人工ニューラルツインを提案する。
我々のアプローチでは、分散プロセスのステップの状態を推定するために、微分可能なデータ融合を導入します。
相互接続されたプロセスステップを準ニューラルネットワークとして扱うことで、プロセス最適化やモデル微調整のための損失勾配をプロセスパラメータにバックプロパゲートすることができる。
論文 参考訳(メタデータ) (2024-03-27T08:34:39Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
ディープネットワークにおけるコンポーネントとしての制約付き最適化モデルの統合は、多くの専門的な学習タスクに有望な進歩をもたらした。
この設定における中心的な課題は最適化問題の解によるバックプロパゲーションであり、しばしば閉形式を欠いている。
本稿では, 非線形最適化の後方通過に関する理論的知見を提供し, 特定の反復法による線形システムの解と等価であることを示す。
Folded Optimizationと呼ばれるシステムが提案され、非ローリングなソルバ実装からより効率的なバックプロパゲーションルールを構築する。
論文 参考訳(メタデータ) (2023-12-28T23:15:18Z) - From Optimization to Control: Quasi Policy Iteration [3.4376560669160394]
準政治反復(QPI)と呼ばれる新しい制御アルゴリズムを提案する。
QPIは、政策反復アルゴリズムにおける「ヘシアン」行列の新たな近似に基づいて、MDPに特有の2つの線形構造制約を利用する。
これは、割引係数に対する感度が極めて低い政策反復と同様の実証的な収束挙動を示す。
論文 参考訳(メタデータ) (2023-11-18T21:00:14Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
本稿では,ニューラルネットワークを一般化し,トランスフォーマーアーキテクチャを用いて獲得関数を学習する,エンド・ツー・エンドの差別化可能な最初のメタBOフレームワークを提案する。
我々は、この強化学習(RL)によるエンドツーエンドのフレームワークを、ラベル付き取得データの欠如に対処できるようにします。
論文 参考訳(メタデータ) (2023-05-25T10:58:46Z) - Discovering Hierarchical Process Models: an Approach Based on Events
Clustering [0.0]
本稿では,2段階のワークフローネットとして表現される階層的プロセスモデルを発見するアルゴリズムを提案する。
既存のソリューションとは異なり、我々のアルゴリズムはプロセス制御フローに制限を課さず、反復を可能にする。
論文 参考訳(メタデータ) (2023-03-12T11:05:40Z) - Improvement of Computational Performance of Evolutionary AutoML in a
Heterogeneous Environment [0.0]
グラフ構造を持つパイプラインのモデリングにおける進化的最適化の質を高めるためのモジュラー手法を提案する。
実装されたアルゴリズムは、オープンソースのフレームワークであるFEDOTの一部として利用可能である。
論文 参考訳(メタデータ) (2023-01-12T15:59:04Z) - Deep Equilibrium Assisted Block Sparse Coding of Inter-dependent
Signals: Application to Hyperspectral Imaging [71.57324258813675]
相互依存信号のデータセットは、列が強い依存を示す行列として定義される。
ニューラルネットワークは、事前に構造として機能し、基礎となる信号相互依存性を明らかにするために使用される。
ディープ・アンローリングとディープ・平衡に基づくアルゴリズムが開発され、高度に解釈可能で簡潔なディープ・ラーニング・ベース・アーキテクチャを形成する。
論文 参考訳(メタデータ) (2022-03-29T21:00:39Z) - Automated Evolutionary Approach for the Design of Composite Machine
Learning Pipelines [48.7576911714538]
提案手法は、複合機械学習パイプラインの設計を自動化することを目的としている。
パイプラインをカスタマイズ可能なグラフベースの構造で設計し、得られた結果を分析して再生する。
このアプローチのソフトウェア実装は、オープンソースフレームワークとして紹介されている。
論文 参考訳(メタデータ) (2021-06-26T23:19:06Z) - Process Discovery for Structured Program Synthesis [70.29027202357385]
プロセスマイニングにおける中核的なタスクは、イベントログデータから正確なプロセスモデルを学ぶことを目的としたプロセス発見である。
本稿では,ターゲットプロセスモデルとして(ブロック-)構造化プログラムを直接使用することを提案する。
我々は,このような構造化プログラムプロセスモデルの発見に対して,新たなボトムアップ・アグリメティブ・アプローチを開発する。
論文 参考訳(メタデータ) (2020-08-13T10:33:10Z) - Iterative Algorithm Induced Deep-Unfolding Neural Networks: Precoding
Design for Multiuser MIMO Systems [59.804810122136345]
本稿では,AIIDNN(ディープ・アンフォールディング・ニューラルネット)を一般化した,ディープ・アンフォールディングのためのフレームワークを提案する。
古典的重み付き最小二乗誤差(WMMSE)反復アルゴリズムの構造に基づく効率的なIAIDNNを提案する。
提案したIAIDNNは,計算複雑性を低減した反復WMMSEアルゴリズムの性能を効率よく向上することを示す。
論文 参考訳(メタデータ) (2020-06-15T02:57:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。