Multiplexed Processing of Quantum Information Across an Ultra-wide Optical Bandwidth
- URL: http://arxiv.org/abs/2310.17819v4
- Date: Wed, 20 Nov 2024 07:12:50 GMT
- Title: Multiplexed Processing of Quantum Information Across an Ultra-wide Optical Bandwidth
- Authors: Alon Eldan, Ofek Gilon, Asher Lagemi, Elai Fishman Furman, Avi Pe'er,
- Abstract summary: Current quantum protocols are limited by the narrow electronic bandwidth of standard measurement devices.
We present a concept of frequency multiplexed quantum channels and a set of methods to process quantum information efficiently across the available optical bandwidth.
- Score: 0.0
- License:
- Abstract: Protocols for processing of quantum information are the foundation of quantum technology, enabling to share secrets at a distance, teleport quantum states, and to implement quantum computation. While many protocols were realized, and even commercialized, the throughput and processing speed of current protocols is limited by the narrow electronic bandwidth of standard measurement devices (typically in the MHz-to-GHz range), which is orders-of-magnitude lower than the optical bandwidth of available quantum optical sources (10-100 THz), indicating that the bandwidth resource is dramatically underutilized in current quantum optical technology. We present a general concept of frequency multiplexed quantum channels and a set of methods to process quantum information efficiently across the available optical bandwidth. Using a broadband source of squeezed light, spectral manipulation methods and parametric homodyne detection, we are able to generate, process and measure all the channels in parallel, thereby harnessing the optical bandwidth for quantum information in an efficient manner. We exemplify the concept through two basic protocols: Multiplexed Continuous-Variable Quantum Key Distribution (CV-QKD) and multiplexed continuous-variable quantum teleportation. The multiplexed QKD protocol is demonstrated in a proof-of-principle experiment, where we successfully carry out QKD over 23 uncorrelated spectral channels, with capability to detect eavesdropping in any channel. These multiplexed methods (and similar) will enable to carry out quantum processing in parallel over hundreds of channels, potentially increasing the throughput of quantum protocols by orders of magnitude.
Related papers
- Distributed Quantum Computing in Silicon [40.16556091789959]
We present preliminary demonstrations of some key distributed quantum computing protocols on silicon T centres in isotopically-enriched silicon.
We demonstrate the distribution of entanglement between modules and consume it to apply a teleported gate sequence.
arXiv Detail & Related papers (2024-06-03T18:02:49Z) - Single-Round Proofs of Quantumness from Knowledge Assumptions [41.94295877935867]
A proof of quantumness is an efficiently verifiable interactive test that an efficient quantum computer can pass.
Existing single-round protocols require large quantum circuits, whereas multi-round ones use smaller circuits but require experimentally challenging mid-circuit measurements.
We construct efficient single-round proofs of quantumness based on existing knowledge assumptions.
arXiv Detail & Related papers (2024-05-24T17:33:10Z) - Mitigating Errors on Superconducting Quantum Processors through Fuzzy
Clustering [38.02852247910155]
A new Quantum Error Mitigation (QEM) technique uses Fuzzy C-Means clustering to specifically identify measurement error patterns.
We report a proof-of-principle validation of the technique on a 2-qubit register, obtained as a subset of a real NISQ 5-qubit superconducting quantum processor.
We demonstrate that the FCM-based QEM technique allows for reasonable improvement of the expectation values of single- and two-qubit gates based quantum circuits.
arXiv Detail & Related papers (2024-02-02T14:02:45Z) - Enhanced quantum state transfer: Circumventing quantum chaotic behavior [35.74056021340496]
We show how to transfer few-particle quantum states in a two-dimensional quantum network.
Our approach paves the way to short-distance quantum communication for connecting distributed quantum processors or registers.
arXiv Detail & Related papers (2024-02-01T19:00:03Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Multimode Squeezed State for Reconfigurable Quantum Networks at
Telecommunication Wavelengths [0.0]
We present an experimental source of multimode squeezed states of light at telecommunication wavelengths.
Generation at such wavelengths is especially important as it can enable quantum information processing, communication, and sensing beyond the laboratory scale.
Results pave the way for a scalable implementation of continuous variable quantum information protocols at telecommunication wavelengths.
arXiv Detail & Related papers (2023-06-12T17:52:40Z) - Frequency-tunable microwave quantum light source based on
superconducting quantum circuits [6.7579902550023245]
A non-classical light source is essential for implementing a wide range of quantum information processing protocols.
In the microwave regime, propagating photonic qubits serve as building blocks of large-scale quantum computers.
Here we demonstrate a microwave quantum light source based on superconducting quantum circuits that can generate propagating single photons.
arXiv Detail & Related papers (2023-04-12T13:21:40Z) - A Continuous Variable Quantum Switch [0.0]
We present a quantum repeating switch for CV quantum encodings that caters to multiple communication flows.
The architecture of the switch is based on quantum light sources, detectors, memories, and switching fabric.
We present numerical results on an achievable bipartite entanglement request rate region for multiple CV entanglement flows.
arXiv Detail & Related papers (2022-09-17T15:23:20Z) - Backward propagating quantum repeater protocol with multiple quantum
memories [0.0]
We propose a quantum repeater protocol based on backward propagating photon emission and absorption.
It is applicable to various physical systems and opens up the possibility of high-speed high-fidelity quantum networks.
arXiv Detail & Related papers (2022-05-09T12:42:51Z) - Detecting Quantum Capacities of Continuous-Variable Quantum Channels [0.7614628596146599]
We introduce a method for detecting the quantum capacity of continuous variable communication channels and memories without performing a full process tomography.
Our method works in the general scenario where the devices are used a finite number of times, can exhibit correlations across multiple uses, and can change dynamically under the control of a malicious adversary.
arXiv Detail & Related papers (2021-08-30T16:18:39Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.