SpectralDiff: A Generative Framework for Hyperspectral Image
Classification with Diffusion Models
- URL: http://arxiv.org/abs/2304.05961v2
- Date: Fri, 1 Sep 2023 04:09:37 GMT
- Title: SpectralDiff: A Generative Framework for Hyperspectral Image
Classification with Diffusion Models
- Authors: Ning Chen, Jun Yue, Leyuan Fang, Shaobo Xia
- Abstract summary: We propose a generative framework for HSI classification with diffusion models (SpectralDiff)
SpectralDiff effectively mines the distribution information of high-dimensional and highly redundant data.
Experiments on three public HSI datasets demonstrate that the proposed method can achieve better performance than state-of-the-art methods.
- Score: 18.391049303136715
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hyperspectral Image (HSI) classification is an important issue in remote
sensing field with extensive applications in earth science. In recent years, a
large number of deep learning-based HSI classification methods have been
proposed. However, existing methods have limited ability to handle
high-dimensional, highly redundant, and complex data, making it challenging to
capture the spectral-spatial distributions of data and relationships between
samples. To address this issue, we propose a generative framework for HSI
classification with diffusion models (SpectralDiff) that effectively mines the
distribution information of high-dimensional and highly redundant data by
iteratively denoising and explicitly constructing the data generation process,
thus better reflecting the relationships between samples. The framework
consists of a spectral-spatial diffusion module, and an attention-based
classification module. The spectral-spatial diffusion module adopts forward and
reverse spectral-spatial diffusion processes to achieve adaptive construction
of sample relationships without requiring prior knowledge of graphical
structure or neighborhood information. It captures spectral-spatial
distribution and contextual information of objects in HSI and mines
unsupervised spectral-spatial diffusion features within the reverse diffusion
process. Finally, these features are fed into the attention-based
classification module for per-pixel classification. The diffusion features can
facilitate cross-sample perception via reconstruction distribution, leading to
improved classification performance. Experiments on three public HSI datasets
demonstrate that the proposed method can achieve better performance than
state-of-the-art methods. For the sake of reproducibility, the source code of
SpectralDiff will be publicly available at
https://github.com/chenning0115/SpectralDiff.
Related papers
- Hierarchical Attention and Parallel Filter Fusion Network for Multi-Source Data Classification [33.26466989592473]
We propose a hierarchical attention and parallel filter fusion network for multi-source data classification.
Our proposed method achieves 91.44% and 80.51% of overall accuracy (OA) on the respective datasets.
arXiv Detail & Related papers (2024-08-22T23:14:22Z) - Spectral Graph Reasoning Network for Hyperspectral Image Classification [0.43512163406551996]
Convolutional neural networks (CNNs) have achieved remarkable performance in hyperspectral image (HSI) classification.
We propose a spectral graph reasoning network (SGR) learning framework comprising two crucial modules.
Experiments on two HSI datasets demonstrate that the proposed architecture can significantly improve the classification accuracy.
arXiv Detail & Related papers (2024-07-02T20:29:23Z) - Datacube segmentation via Deep Spectral Clustering [76.48544221010424]
Extended Vision techniques often pose a challenge in their interpretation.
The huge dimensionality of data cube spectra poses a complex task in its statistical interpretation.
In this paper, we explore the possibility of applying unsupervised clustering methods in encoded space.
A statistical dimensional reduction is performed by an ad hoc trained (Variational) AutoEncoder, while the clustering process is performed by a (learnable) iterative K-Means clustering algorithm.
arXiv Detail & Related papers (2024-01-31T09:31:28Z) - DiffSpectralNet : Unveiling the Potential of Diffusion Models for
Hyperspectral Image Classification [6.521187080027966]
We propose a new network called DiffSpectralNet, which combines diffusion and transformer techniques.
First, we use an unsupervised learning framework based on the diffusion model to extract both high-level and low-level spectral-spatial features.
The diffusion method is capable of extracting diverse and meaningful spectral-spatial features, leading to improvement in HSI classification.
arXiv Detail & Related papers (2023-10-29T15:26:37Z) - Hodge-Aware Contrastive Learning [101.56637264703058]
Simplicial complexes prove effective in modeling data with multiway dependencies.
We develop a contrastive self-supervised learning approach for processing simplicial data.
arXiv Detail & Related papers (2023-09-14T00:40:07Z) - Boosting the Generalization Ability for Hyperspectral Image Classification using Spectral-spatial Axial Aggregation Transformer [14.594398447576188]
In the hyperspectral image classification (HSIC) task, the most commonly used model validation paradigm is partitioning the training-test dataset through pixel-wise random sampling.
In our experiments, we found that the high accuracy was reached because the training and test datasets share a lot of information.
We propose a spectral-spatial axial aggregation transformer model, namely SaaFormer, that preserves generalization across dataset partitions.
arXiv Detail & Related papers (2023-06-29T07:55:43Z) - DDS2M: Self-Supervised Denoising Diffusion Spatio-Spectral Model for
Hyperspectral Image Restoration [103.79030498369319]
Self-supervised diffusion model for hyperspectral image restoration is proposed.
textttDDS2M enjoys stronger ability to generalization compared to existing diffusion-based methods.
Experiments on HSI denoising, noisy HSI completion and super-resolution on a variety of HSIs demonstrate textttDDS2M's superiority over the existing task-specific state-of-the-arts.
arXiv Detail & Related papers (2023-03-12T14:57:04Z) - Unsupervised Machine Learning for Exploratory Data Analysis of Exoplanet
Transmission Spectra [68.8204255655161]
We focus on unsupervised techniques for analyzing spectral data from transiting exoplanets.
We show that there is a high degree of correlation in the spectral data, which calls for appropriate low-dimensional representations.
We uncover interesting structures in the principal component basis, namely, well-defined branches corresponding to different chemical regimes.
arXiv Detail & Related papers (2022-01-07T22:26:33Z) - SpectralFormer: Rethinking Hyperspectral Image Classification with
Transformers [91.09957836250209]
Hyperspectral (HS) images are characterized by approximately contiguous spectral information.
CNNs have been proven to be a powerful feature extractor in HS image classification.
We propose a novel backbone network called ulSpectralFormer for HS image classification.
arXiv Detail & Related papers (2021-07-07T02:59:21Z) - Spectral-Spatial Global Graph Reasoning for Hyperspectral Image
Classification [50.899576891296235]
Convolutional neural networks have been widely applied to hyperspectral image classification.
Recent methods attempt to address this issue by performing graph convolutions on spatial topologies.
arXiv Detail & Related papers (2021-06-26T06:24:51Z) - Spectral Pyramid Graph Attention Network for Hyperspectral Image
Classification [5.572542792318872]
Convolutional neural networks (CNN) have made significant advances in hyperspectral image (HSI) classification.
Standard convolutional kernel neglects intrinsic connections between data points, resulting in poor region delineation and small spurious predictions.
This paper presents a novel architecture which explicitly addresses these two issues.
arXiv Detail & Related papers (2020-01-20T13:49:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.