Maximum-likelihood Estimators in Physics-Informed Neural Networks for
High-dimensional Inverse Problems
- URL: http://arxiv.org/abs/2304.05991v2
- Date: Fri, 14 Apr 2023 17:51:48 GMT
- Title: Maximum-likelihood Estimators in Physics-Informed Neural Networks for
High-dimensional Inverse Problems
- Authors: Gabriel S. Gusm\~ao and Andrew J. Medford
- Abstract summary: Physics-informed neural networks (PINNs) have proven a suitable mathematical scaffold for solving inverse ordinary (ODE) and partial differential equations (PDE)
In this work, we demonstrate that inverse PINNs can be framed in terms of maximum-likelihood estimators (MLE) to allow explicit error propagation from to the physical model space through Taylor expansion.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Physics-informed neural networks (PINNs) have proven a suitable mathematical
scaffold for solving inverse ordinary (ODE) and partial differential equations
(PDE). Typical inverse PINNs are formulated as soft-constrained multi-objective
optimization problems with several hyperparameters. In this work, we
demonstrate that inverse PINNs can be framed in terms of maximum-likelihood
estimators (MLE) to allow explicit error propagation from interpolation to the
physical model space through Taylor expansion, without the need of
hyperparameter tuning. We explore its application to high-dimensional coupled
ODEs constrained by differential algebraic equations that are common in
transient chemical and biological kinetics. Furthermore, we show that
singular-value decomposition (SVD) of the ODE coupling matrices (reaction
stoichiometry matrix) provides reduced uncorrelated subspaces in which PINNs
solutions can be represented and over which residuals can be projected.
Finally, SVD bases serve as preconditioners for the inversion of covariance
matrices in this hyperparameter-free robust application of MLE to
``kinetics-informed neural networks''.
Related papers
- Functional Tensor Decompositions for Physics-Informed Neural Networks [8.66932181641177]
Physics-Informed Neural Networks (PINNs) have shown continuous and increasing promise in approximating partial differential equations (PDEs)
We propose a generalized PINN version of the classical variable separable method.
Our methodology significantly enhances the performance of PINNs, as evidenced by improved results on complex high-dimensional PDEs.
arXiv Detail & Related papers (2024-08-23T14:24:43Z) - Grad-Shafranov equilibria via data-free physics informed neural networks [0.0]
We show that PINNs can accurately and effectively solve the Grad-Shafranov equation with several different boundary conditions.
We introduce a parameterized PINN framework, expanding the input space to include variables such as pressure, aspect ratio, elongation, and triangularity.
arXiv Detail & Related papers (2023-11-22T16:08:38Z) - Multi-Grid Tensorized Fourier Neural Operator for High-Resolution PDEs [93.82811501035569]
We introduce a new data efficient and highly parallelizable operator learning approach with reduced memory requirement and better generalization.
MG-TFNO scales to large resolutions by leveraging local and global structures of full-scale, real-world phenomena.
We demonstrate superior performance on the turbulent Navier-Stokes equations where we achieve less than half the error with over 150x compression.
arXiv Detail & Related papers (2023-09-29T20:18:52Z) - A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
We develop an ODE based IVP solver which prevents the network from getting ill-conditioned and runs in time linear in the number of parameters.
We show that current methods based on this approach suffer from two key issues.
First, following the ODE produces an uncontrolled growth in the conditioning of the problem, ultimately leading to unacceptably large numerical errors.
arXiv Detail & Related papers (2023-04-28T17:28:18Z) - Convergence analysis of unsupervised Legendre-Galerkin neural networks
for linear second-order elliptic PDEs [0.8594140167290099]
We perform the convergence analysis of unsupervised Legendre--Galerkin neural networks (ULGNet)
ULGNet is a deep-learning-based numerical method for solving partial differential equations (PDEs)
arXiv Detail & Related papers (2022-11-16T13:31:03Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
In this work, we assess the ability of physics-informed neural networks (PINNs) to solve increasingly-complex coupled ordinary differential equations (ODEs)
We show that PINNs eventually fail to produce correct solutions to these benchmarks as their complexity increases.
We identify several reasons why this may be the case, including insufficient network capacity, poor conditioning of the ODEs, and high local curvature, as measured by the Laplacian of the PINN loss.
arXiv Detail & Related papers (2022-10-14T15:01:32Z) - A mixed formulation for physics-informed neural networks as a potential
solver for engineering problems in heterogeneous domains: comparison with
finite element method [0.0]
Physics-informed neural networks (PINNs) are capable of finding the solution for a given boundary value problem.
We employ several ideas from the finite element method (FEM) to enhance the performance of existing PINNs in engineering problems.
arXiv Detail & Related papers (2022-06-27T08:18:08Z) - Monte Carlo PINNs: deep learning approach for forward and inverse
problems involving high dimensional fractional partial differential equations [8.378422134042722]
We introduce a sampling based machine learning approach, Monte Carlo physics informed neural networks (MC-PINNs) for solving forward and inverse fractional partial differential equations (FPDEs)
As a generalization of physics informed neural networks (PINNs), our method relies on deep neural network surrogates in addition to an approximation strategy for computing the fractional derivatives of the outputs.
We validate the performance of MC-PINNs via several examples that include high dimensional integral fractional Laplacian equations, parametric identification of time-space fractional PDEs, and fractional diffusion equation with random inputs.
arXiv Detail & Related papers (2022-03-16T09:52:05Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
We develop a novel approach that can significantly accelerate the training of Physics-Informed Neural Networks.
In particular, we parameterize the PDE solution by the Gaussian smoothed model and show that, derived from Stein's Identity, the second-order derivatives can be efficiently calculated without back-propagation.
Experimental results show that our proposed method can achieve competitive error compared to standard PINN training but is two orders of magnitude faster.
arXiv Detail & Related papers (2022-02-18T18:07:54Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
We study estimation in a class of generalized Structural equation models (SEMs)
We formulate the linear operator equation as a min-max game, where both players are parameterized by neural networks (NNs), and learn the parameters of these neural networks using a gradient descent.
For the first time we provide a tractable estimation procedure for SEMs based on NNs with provable convergence and without the need for sample splitting.
arXiv Detail & Related papers (2020-07-02T17:55:47Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.