論文の概要: Choose Your Weapon: Survival Strategies for Depressed AI Academics
- arxiv url: http://arxiv.org/abs/2304.06035v1
- Date: Fri, 31 Mar 2023 17:33:10 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-16 22:06:17.747785
- Title: Choose Your Weapon: Survival Strategies for Depressed AI Academics
- Title(参考訳): 武器を選ぶ - 抑うつしたai研究者の生存戦略
- Authors: Julian Togelius and Georgios N. Yannakakis
- Abstract要約: ますます多くのAI学者は、世界規模で競争する手段やリソースを見つけることができない。
ここでは、学術的なまま競争力を保つために何ができるかについて議論する。
これは完全な戦略リストではなく、すべての戦略に同意できないかもしれないが、議論を始めるのに役立つ。
- 参考スコア(独自算出の注目度): 5.799083578008217
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Are you an AI researcher at an academic institution? Are you anxious you are
not coping with the current pace of AI advancements? Do you feel you have no
(or very limited) access to the computational and human resources required for
an AI research breakthrough? You are not alone; we feel the same way. A growing
number of AI academics can no longer find the means and resources to compete at
a global scale. This is a somewhat recent phenomenon, but an accelerating one,
with private actors investing enormous compute resources into cutting edge AI
research. Here, we discuss what you can do to stay competitive while remaining
an academic. We also briefly discuss what universities and the private sector
could do improve the situation, if they are so inclined. This is not an
exhaustive list of strategies, and you may not agree with all of them, but it
serves to start a discussion.
- Abstract(参考訳): あなたは学術機関のAI研究者ですか?
あなたは現在のAI進歩に対処しないことを心配していますか?
AI研究のブレークスルーに必要な計算と人的リソースにアクセスできない(あるいは非常に制限されている)と感じていますか?
あなたは一人ではありません。私たちは同じ気持ちです。
ますます多くのAI学者は、世界規模で競争する手段やリソースを見つけることができない。
これはやや最近の現象だが、プライベートアクターが最先端のai研究に膨大な計算資源を投資することで加速している。
ここでは、学術的なまま競争力を保つために何ができるかについて議論する。
また,大学や民間部門がどのような状況で改善できるのか,その傾向について簡単に議論する。
これは戦略の完全なリストではなく、それらすべてに同意できないかもしれないが、議論を始めるのに役立ちます。
関連論文リスト
- Artificial intelligence adoption in the physical sciences, natural
sciences, life sciences, social sciences and the arts and humanities: A
bibliometric analysis of research publications from 1960-2021 [73.06361680847708]
1960年には333の研究分野の14%がAIに関連していたが、1972年には全研究分野の半分以上、1986年には80%以上、現在では98%以上まで増加した。
1960年には、333の研究分野の14%がAI(コンピュータ科学の多くの分野)に関連していたが、1972年までに全研究分野の半分以上、1986年には80%以上、現在では98%以上まで増加した。
我々は、現在の急上昇の状況が異なっており、学際的AI応用が持続する可能性が高いと結論付けている。
論文 参考訳(メタデータ) (2023-06-15T14:08:07Z) - Un jeu a debattre pour sensibiliser a l'Intelligence Artificielle dans
le contexte de la pandemie de COVID-19 [0.0]
我々は,パンデミックを制御するためのAIソリューションの選択を目的とした市民討論という形で,真剣なゲームを提案する。
このゲームは高校生をターゲットにしており、科学フェアで初めて実験され、現在は無料で利用できる。
論文 参考訳(メタデータ) (2023-04-19T09:06:10Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
AIフェアネスを詳しく見て、AIフェアネスの欠如が、時間の経過とともにバイアスの深化につながるかを分析します。
偏りのあるモデルが特定のグループに対してよりネガティブな現実的な結果をもたらすかについて議論する。
問題が続くと、他のリスクとの相互作用によって強化され、社会不安という形で社会に深刻な影響を及ぼす可能性がある。
論文 参考訳(メタデータ) (2023-04-16T11:22:59Z) - Unpacking the "Black Box" of AI in Education [0.0]
われわれは,「AI」とは何か,それが人間の状態を改善する教育機会の進展と妨げに持つ可能性を明らかにすることを目指している。
我々は、AIを支える様々な方法と哲学の基礎的な紹介、最近の進歩について議論、教育への応用を探究し、重要な制限とリスクを強調します。
教育における人間中心のAIの発展を理解し、尋問し、最終的に形作ることができるように、ジャーゴンの言葉や概念をしばしば利用できるようにすることを願っています。
論文 参考訳(メタデータ) (2022-12-31T18:27:21Z) - On Avoiding Power-Seeking by Artificial Intelligence [93.9264437334683]
私たちは、非常にインテリジェントなAIエージェントの振る舞いと人間の関心を協調する方法を知りません。
私は、世界に限られた影響を与え、自律的に力を求めないスマートAIエージェントを構築できるかどうか調査する。
論文 参考訳(メタデータ) (2022-06-23T16:56:21Z) - Challenges of Artificial Intelligence -- From Machine Learning and
Computer Vision to Emotional Intelligence [0.0]
AIは人間の支配者ではなく、支援者である、と私たちは信じています。
コンピュータビジョンはAIの開発の中心となっている。
感情は人間の知性の中心であるが、AIではほとんど使われていない。
論文 参考訳(メタデータ) (2022-01-05T06:00:22Z) - AI in Games: Techniques, Challenges and Opportunities [40.86375378643978]
Libratus、OpenAI Five、AlphaStarといった様々なゲームAIシステムが開発され、プロの人間プレイヤーに勝っている。
本稿では,最近成功したゲームAI,ボードゲームAI,カードゲームAI,ファーストパーソンシューティングゲームAI,リアルタイム戦略ゲームAIについて調査する。
論文 参考訳(メタデータ) (2021-11-15T09:35:53Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
我々は,信頼に値するAIを実現する上で最も重要な6つの要素,(i)安全とロバスト性,(ii)非差別と公正,(iii)説明可能性,(iv)プライバシー,(v)説明可能性と監査性,(vi)環境ウェルビーイングに焦点をあてる。
各次元について、分類学に基づく最近の関連技術について概観し、実世界のシステムにおけるそれらの応用を概説する。
論文 参考訳(メタデータ) (2021-07-12T14:21:46Z) - The Threat of Offensive AI to Organizations [52.011307264694665]
この調査は、組織に対する攻撃的なAIの脅威を調査する。
まず、AIが敵の方法、戦略、目標、および全体的な攻撃モデルをどのように変えるかについて議論する。
そして、文献レビューを通じて、敵が攻撃を強化するために使用できる33の攻撃的AI能力を特定します。
論文 参考訳(メタデータ) (2021-06-30T01:03:28Z) - "Weak AI" is Likely to Never Become "Strong AI", So What is its Greatest
Value for us? [4.497097230665825]
多くの研究者は、ここ数十年でAIがほとんど進歩していないと主張している。
著者は、AIに関する議論が存在する理由を説明します。(2)「弱いAI」と「強いAI」と呼ばれる2つのAI研究パラダイムを区別します。
論文 参考訳(メタデータ) (2021-03-29T02:57:48Z) - OpenHoldem: An Open Toolkit for Large-Scale Imperfect-Information Game
Research [82.09426894653237]
OpenHoldemは、NLTHを用いた大規模不完全情報ゲーム研究のための統合ツールキットです。
1)異なるNLTH AIを徹底的に評価するための標準化された評価プロトコル、2)NLTH AIのための3つの公的に利用可能な強力なベースライン、3)公開NLTH AI評価のための使いやすいAPIを備えたオンラインテストプラットフォーム。
論文 参考訳(メタデータ) (2020-12-11T07:24:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。