論文の概要: FollowMe: Vehicle Behaviour Prediction in Autonomous Vehicle Settings
- arxiv url: http://arxiv.org/abs/2304.06121v1
- Date: Wed, 12 Apr 2023 19:05:56 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-14 16:28:10.682736
- Title: FollowMe: Vehicle Behaviour Prediction in Autonomous Vehicle Settings
- Title(参考訳): followme:自動運転車の設定における車両挙動予測
- Authors: Abduallah Mohamed, Jundi Liu, Linda Ng Boyle, Christian Claudel
- Abstract要約: 我々は、動きと振舞いの予測問題を提供する新しいデータセット、FollowMeデータセットを紹介した。
本稿では,FollowMe-STGCNNの設計上の利点について述べる。
- 参考スコア(独自算出の注目度): 2.294014185517203
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: An ego vehicle following a virtual lead vehicle planned route is an essential
component when autonomous and non-autonomous vehicles interact. Yet, there is a
question about the driver's ability to follow the planned lead vehicle route.
Thus, predicting the trajectory of the ego vehicle route given a lead vehicle
route is of interest. We introduce a new dataset, the FollowMe dataset, which
offers a motion and behavior prediction problem by answering the latter
question of the driver's ability to follow a lead vehicle. We also introduce a
deep spatio-temporal graph model FollowMe-STGCNN as a baseline for the dataset.
In our experiments and analysis, we show the design benefits of FollowMe-STGCNN
in capturing the interactions that lie within the dataset. We contrast the
performance of FollowMe-STGCNN with prior motion prediction models showing the
need to have a different design mechanism to address the lead vehicle following
settings.
- Abstract(参考訳): 仮想リード車両計画ルートに続くエゴ車両は、自律車と非自律車との相互作用において必須の要素である。
しかし、ドライバーが計画されたリード車両の経路をたどる能力については疑問がある。
したがって、リード車両経路を与えられたエゴ車両経路の軌跡の予測が注目される。
本研究では,運転者が先頭車両に追従する能力について,後者の質問に答えることで行動・行動予測問題を実現する,新しいデータセットである followme dataset を提案する。
また、データセットのベースラインとして、深部時空間グラフモデルFollowMe-STGCNNを導入する。
実験と分析では,FollowMe-STGCNNがデータセット内のインタラクションをキャプチャする際の利点を示す。
先行運動予測モデルと比較し,先行運動予測モデルでは,先行車両に追従する状況に対応するための異なる設計機構が必要であることを示した。
関連論文リスト
- BAT: Behavior-Aware Human-Like Trajectory Prediction for Autonomous
Driving [24.123577277806135]
我々は行動認識軌道予測モデル(BAT)を考案した。
我々のモデルは行動認識、相互作用認識、優先度認識、位置認識モジュールから構成される。
次世代シミュレーション(NGSIM)、ハイウェイドローン(HighD)、ラウンドアバウンドドローン(RounD)、マカオコネクテッド自律運転(MoCAD)データセットにおけるBATの性能を評価する。
論文 参考訳(メタデータ) (2023-12-11T13:27:51Z) - Is Ego Status All You Need for Open-Loop End-to-End Autonomous Driving? [84.17711168595311]
エンドツーエンドの自動運転は、フルスタックの観点から自律性を目標とする、有望な研究の方向性として浮上している。
比較的単純な駆動シナリオを特徴とするnuScenesデータセットは、エンド・ツー・エンド・モデルにおける知覚情報の未使用化につながる。
予測軌跡が道路に付着するかどうかを評価するための新しい指標を提案する。
論文 参考訳(メタデータ) (2023-12-05T11:32:31Z) - PPAD: Iterative Interactions of Prediction and Planning for End-to-end Autonomous Driving [57.89801036693292]
PPAD(Iterative Interaction of Prediction and Planning Autonomous Driving)は、予測と計画のより良い統合を目的とした、タイムステップワイドなインタラクションである。
我々は,階層的動的キーオブジェクトに着目したego-to-agent,ego-to-map,ego-to-BEVインタラクション機構を設計し,インタラクションをモデル化する。
論文 参考訳(メタデータ) (2023-11-14T11:53:24Z) - Interaction-Aware Personalized Vehicle Trajectory Prediction Using
Temporal Graph Neural Networks [8.209194305630229]
既存の手法は主に大規模なデータセットからの一般的な軌道予測に依存している。
本稿では,時間グラフニューラルネットワークを組み込んだ対話型車両軌跡予測手法を提案する。
論文 参考訳(メタデータ) (2023-08-14T20:20:26Z) - An End-to-End Vehicle Trajcetory Prediction Framework [3.7311680121118345]
将来の軌道の正確な予測は、以前の軌道に依存するだけでなく、近くの他の車両間の複雑な相互作用のシミュレーションにも依存する。
この問題に対処するために構築されたほとんどの最先端のネットワークは、軌跡をたどって容易に利用できると仮定している。
本稿では,生のビデオ入力を取り込み,将来の軌跡予測を出力する新しいエンドツーエンドアーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-04-19T15:42:03Z) - RSG-Net: Towards Rich Sematic Relationship Prediction for Intelligent
Vehicle in Complex Environments [72.04891523115535]
本稿では,オブジェクトの提案から潜在的意味関係を予測するグラフ畳み込みネットワークRSG-Netを提案する。
実験の結果、このネットワークはロードシーングラフデータセットに基づいてトレーニングされており、エゴ車両周辺のオブジェクト間の潜在的な意味関係を効率的に予測できることがわかった。
論文 参考訳(メタデータ) (2022-07-16T12:40:17Z) - CRAT-Pred: Vehicle Trajectory Prediction with Crystal Graph
Convolutional Neural Networks and Multi-Head Self-Attention [10.83642398981694]
CRAT-Predは、地図情報に依存しない軌道予測モデルである。
このモデルは非常に少ないモデルパラメータで最先端の性能を達成する。
さらに,車間の社会的相互作用を,測定可能なインタラクションスコアを表す重みによって学習できることを定量的に示す。
論文 参考訳(メタデータ) (2022-02-09T14:36:36Z) - PnPNet: End-to-End Perception and Prediction with Tracking in the Loop [82.97006521937101]
我々は、自動運転車の文脈において、共同認識と運動予測の問題に取り組む。
我々は,入力センサデータとしてエンド・ツー・エンドのモデルであるNetを提案し,各ステップのオブジェクト追跡とその将来レベルを出力する。
論文 参考訳(メタデータ) (2020-05-29T17:57:25Z) - PiP: Planning-informed Trajectory Prediction for Autonomous Driving [69.41885900996589]
マルチエージェント設定における予測問題に対処するために,計画インフォームド・トラジェクトリ予測(PiP)を提案する。
本手法は,エゴカーの計画により予測過程を通知することにより,高速道路のデータセット上でのマルチエージェント予測の最先端性能を実現する。
論文 参考訳(メタデータ) (2020-03-25T16:09:54Z) - GISNet: Graph-Based Information Sharing Network For Vehicle Trajectory
Prediction [6.12727713172576]
Google、Uber、DiDiなどのAI指向企業は、より正確な車両軌道予測アルゴリズムを調査している。
本稿では,対象車両とその周辺車両間の情報共有を可能にする新しいグラフベース情報共有ネットワーク(GISNet)を提案する。
論文 参考訳(メタデータ) (2020-03-22T03:24:31Z) - Spatiotemporal Relationship Reasoning for Pedestrian Intent Prediction [57.56466850377598]
視覚データに対する推論は、ロボティクスとビジョンベースのアプリケーションにとって望ましい能力である。
本稿では,歩行者の意図を推論するため,現場の異なる物体間の関係を明らかにするためのグラフ上でのフレームワークを提案する。
歩行者の意図は、通りを横切る、あるいは横断しない将来の行動として定義され、自動運転車にとって非常に重要な情報である。
論文 参考訳(メタデータ) (2020-02-20T18:50:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。