Low-complexity Deep Video Compression with A Distributed Coding
Architecture
- URL: http://arxiv.org/abs/2303.11599v2
- Date: Sun, 2 Apr 2023 05:54:24 GMT
- Title: Low-complexity Deep Video Compression with A Distributed Coding
Architecture
- Authors: Xinjie Zhang, Jiawei Shao, and Jun Zhang
- Abstract summary: Prevalent predictive coding-based video compression methods rely on a heavy encoder to reduce temporal redundancy.
Traditional distributed coding methods suffer from a substantial performance gap to predictive coding ones.
We propose the first end-to-end distributed deep video compression framework to improve rate-distortion performance.
- Score: 4.5885672744218
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Prevalent predictive coding-based video compression methods rely on a heavy
encoder to reduce temporal redundancy, which makes it challenging to deploy
them on resource-constrained devices. Since the 1970s, distributed source
coding theory has indicated that independent encoding and joint decoding with
side information (SI) can achieve high-efficient compression of correlated
sources. This has inspired a distributed coding architecture aiming at reducing
the encoding complexity. However, traditional distributed coding methods suffer
from a substantial performance gap to predictive coding ones. Inspired by the
great success of learning-based compression, we propose the first end-to-end
distributed deep video compression framework to improve the rate-distortion
performance. A key ingredient is an effective SI generation module at the
decoder, which helps to effectively exploit inter-frame correlations without
computation-intensive encoder-side motion estimation and compensation.
Experiments show that our method significantly outperforms conventional
distributed video coding and H.264. Meanwhile, it enjoys 6-7x encoding speedup
against DVC [1] with comparable compression performance. Code is released at
https://github.com/Xinjie-Q/Distributed-DVC.
Related papers
- Accelerating Learned Video Compression via Low-Resolution Representation Learning [18.399027308582596]
We introduce an efficiency-optimized framework for learned video compression that focuses on low-resolution representation learning.
Our method achieves performance levels on par with the low-decay P configuration of the H.266 reference software VTM.
arXiv Detail & Related papers (2024-07-23T12:02:57Z) - Computationally-Efficient Neural Image Compression with Shallow Decoders [43.115831685920114]
This paper takes a step forward towards closing the gap in decoding complexity by using a shallow or even linear decoding transform resembling that of JPEG.
We exploit the often asymmetrical budget between encoding and decoding, by adopting more powerful encoder networks and iterative encoding.
arXiv Detail & Related papers (2023-04-13T03:38:56Z) - Deep Lossy Plus Residual Coding for Lossless and Near-lossless Image
Compression [85.93207826513192]
We propose a unified and powerful deep lossy plus residual (DLPR) coding framework for both lossless and near-lossless image compression.
We solve the joint lossy and residual compression problem in the approach of VAEs.
In the near-lossless mode, we quantize the original residuals to satisfy a given $ell_infty$ error bound.
arXiv Detail & Related papers (2022-09-11T12:11:56Z) - Leveraging Bitstream Metadata for Fast, Accurate, Generalized Compressed
Video Quality Enhancement [74.1052624663082]
We develop a deep learning architecture capable of restoring detail to compressed videos.
We show that this improves restoration accuracy compared to prior compression correction methods.
We condition our model on quantization data which is readily available in the bitstream.
arXiv Detail & Related papers (2022-01-31T18:56:04Z) - Neural JPEG: End-to-End Image Compression Leveraging a Standard JPEG
Encoder-Decoder [73.48927855855219]
We propose a system that learns to improve the encoding performance by enhancing its internal neural representations on both the encoder and decoder ends.
Experiments demonstrate that our approach successfully improves the rate-distortion performance over JPEG across various quality metrics.
arXiv Detail & Related papers (2022-01-27T20:20:03Z) - Conditional Entropy Coding for Efficient Video Compression [82.35389813794372]
We propose a very simple and efficient video compression framework that only focuses on modeling the conditional entropy between frames.
We first show that a simple architecture modeling the entropy between the image latent codes is as competitive as other neural video compression works and video codecs.
We then propose a novel internal learning extension on top of this architecture that brings an additional 10% savings without trading off decoding speed.
arXiv Detail & Related papers (2020-08-20T20:01:59Z) - Modeling Lost Information in Lossy Image Compression [72.69327382643549]
Lossy image compression is one of the most commonly used operators for digital images.
We propose a novel invertible framework called Invertible Lossy Compression (ILC) to largely mitigate the information loss problem.
arXiv Detail & Related papers (2020-06-22T04:04:56Z) - Variable Rate Video Compression using a Hybrid Recurrent Convolutional
Learning Framework [1.9290392443571382]
This paper presents PredEncoder, a hybrid video compression framework based on the concept of predictive auto-encoding.
A variable-rate block encoding scheme has been proposed in the paper that leads to remarkably high quality to bit-rate ratios.
arXiv Detail & Related papers (2020-04-08T20:49:25Z) - Content Adaptive and Error Propagation Aware Deep Video Compression [110.31693187153084]
We propose a content adaptive and error propagation aware video compression system.
Our method employs a joint training strategy by considering the compression performance of multiple consecutive frames instead of a single frame.
Instead of using the hand-crafted coding modes in the traditional compression systems, we design an online encoder updating scheme in our system.
arXiv Detail & Related papers (2020-03-25T09:04:24Z) - A Unified End-to-End Framework for Efficient Deep Image Compression [35.156677716140635]
We propose a unified framework called Efficient Deep Image Compression (EDIC) based on three new technologies.
Specifically, we design an auto-encoder style network for learning based image compression.
Our EDIC method can also be readily incorporated with the Deep Video Compression (DVC) framework to further improve the video compression performance.
arXiv Detail & Related papers (2020-02-09T14:21:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.