An Efficient Transfer Learning-based Approach for Apple Leaf Disease
Classification
- URL: http://arxiv.org/abs/2304.06520v1
- Date: Mon, 10 Apr 2023 08:48:36 GMT
- Title: An Efficient Transfer Learning-based Approach for Apple Leaf Disease
Classification
- Authors: Md. Hamjajul Ashmafee, Tasnim Ahmed, Sabbir Ahmed, Md. Bakhtiar Hasan,
Mst Nura Jahan, A.B.M. Ashikur Rahman
- Abstract summary: This study presents a technique for identifying apple leaf diseases based on transfer learning.
The competence of the proposed pipeline has been evaluated on the apple leaf disease subset from the publicly available PlantVillage' dataset.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Correct identification and categorization of plant diseases are crucial for
ensuring the safety of the global food supply and the overall financial success
of stakeholders. In this regard, a wide range of solutions has been made
available by introducing deep learning-based classification systems for
different staple crops. Despite being one of the most important commercial
crops in many parts of the globe, research proposing a smart solution for
automatically classifying apple leaf diseases remains relatively unexplored.
This study presents a technique for identifying apple leaf diseases based on
transfer learning. The system extracts features using a pretrained
EfficientNetV2S architecture and passes to a classifier block for effective
prediction. The class imbalance issues are tackled by utilizing runtime data
augmentation. The effect of various hyperparameters, such as input resolution,
learning rate, number of epochs, etc., has been investigated carefully. The
competence of the proposed pipeline has been evaluated on the apple leaf
disease subset from the publicly available `PlantVillage' dataset, where it
achieved an accuracy of 99.21%, outperforming the existing works.
Related papers
- PND-Net: Plant Nutrition Deficiency and Disease Classification using Graph Convolutional Network [18.778641229886393]
This article proposes a new deep learning method for plant nutrition deficiencies and disease classification using a graph convolutional network (GNN)
The proposed method, called Plant Nutrition Deficiency and Disease Network (PND-Net), is evaluated on two public datasets for nutrition deficiency, and two for disease classification using four CNNs.
arXiv Detail & Related papers (2024-10-16T17:01:28Z) - Enhancing Plant Disease Detection: A Novel CNN-Based Approach with Tensor Subspace Learning and HOWSVD-MD [3.285994579445155]
This paper introduces a cutting-edge technique for the detection and classification of tomato leaf diseases.
We propose a sophisticated approach within the domain of subspace learning, known as Higher-Order Whitened Singular Value Decomposition.
The efficacy of this innovative method was rigorously tested through comprehensive experiments on two distinct datasets.
arXiv Detail & Related papers (2024-05-30T13:46:56Z) - A Saliency-based Clustering Framework for Identifying Aberrant
Predictions [49.1574468325115]
We introduce the concept of aberrant predictions, emphasizing that the nature of classification errors is as critical as their frequency.
We propose a novel, efficient training methodology aimed at both reducing the misclassification rate and discerning aberrant predictions.
We apply this methodology to the less-explored domain of veterinary radiology, where the stakes are high but have not been as extensively studied compared to human medicine.
arXiv Detail & Related papers (2023-11-11T01:53:59Z) - Multi-task Explainable Skin Lesion Classification [54.76511683427566]
We propose a few-shot-based approach for skin lesions that generalizes well with few labelled data.
The proposed approach comprises a fusion of a segmentation network that acts as an attention module and classification network.
arXiv Detail & Related papers (2023-10-11T05:49:47Z) - Fruit Ripeness Classification: a Survey [59.11160990637616]
Many automatic methods have been proposed that employ a variety of feature descriptors for the food item to be graded.
Machine learning and deep learning techniques dominate the top-performing methods.
Deep learning can operate on raw data and thus relieve the users from having to compute complex engineered features.
arXiv Detail & Related papers (2022-12-29T19:32:20Z) - Unsupervised deep learning techniques for powdery mildew recognition
based on multispectral imaging [63.62764375279861]
This paper presents a deep learning approach to automatically recognize powdery mildew on cucumber leaves.
We focus on unsupervised deep learning techniques applied to multispectral imaging data.
We propose the use of autoencoder architectures to investigate two strategies for disease detection.
arXiv Detail & Related papers (2021-12-20T13:29:13Z) - Less is More: Lighter and Faster Deep Neural Architecture for Tomato
Leaf Disease Classification [0.36700088931938835]
This work proposes a lightweight transfer learning-based approach for detecting diseases from tomato leaves.
It utilizes an effective preprocessing method to enhance the leaf images with illumination correction for improved classification.
The proposed architecture achieves 99.30% accuracy with a model size of 9.60MB and 4.87M floating-point operations.
arXiv Detail & Related papers (2021-09-06T12:14:02Z) - Real-time Plant Health Assessment Via Implementing Cloud-based Scalable
Transfer Learning On AWS DeepLens [0.8714677279673736]
We propose a machine learning approach to detect and classify plant leaf disease.
We use scalable transfer learning on AWS SageMaker and importing it on AWS DeepLens for real-time practical usability.
Our experiments on extensive image data set of healthy and unhealthy leaves of fruits and vegetables showed an accuracy of 98.78% with a real-time diagnosis of plant leaves diseases.
arXiv Detail & Related papers (2020-09-09T05:23:34Z) - Deep Learning for Apple Diseases: Classification and Identification [0.5735035463793008]
Disease and pests cause huge economic loss to the apple industry every year.
In this study, we propose a deep learning based approach for identification and classification of apple diseases.
arXiv Detail & Related papers (2020-07-06T18:08:58Z) - Two-View Fine-grained Classification of Plant Species [66.75915278733197]
We propose a novel method based on a two-view leaf image representation and a hierarchical classification strategy for fine-grained recognition of plant species.
A deep metric based on Siamese convolutional neural networks is used to reduce the dependence on a large number of training samples and make the method scalable to new plant species.
arXiv Detail & Related papers (2020-05-18T21:57:47Z) - Rectified Meta-Learning from Noisy Labels for Robust Image-based Plant
Disease Diagnosis [64.82680813427054]
Plant diseases serve as one of main threats to food security and crop production.
One popular approach is to transform this problem as a leaf image classification task, which can be addressed by the powerful convolutional neural networks (CNNs)
We propose a novel framework that incorporates rectified meta-learning module into common CNN paradigm to train a noise-robust deep network without using extra supervision information.
arXiv Detail & Related papers (2020-03-17T09:51:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.