Enhancing Plant Disease Detection: A Novel CNN-Based Approach with Tensor Subspace Learning and HOWSVD-MD
- URL: http://arxiv.org/abs/2405.20058v1
- Date: Thu, 30 May 2024 13:46:56 GMT
- Title: Enhancing Plant Disease Detection: A Novel CNN-Based Approach with Tensor Subspace Learning and HOWSVD-MD
- Authors: Abdelmalik Ouamane, Ammar Chouchane, Yassine Himeur, Abderrazak Debilou, Abbes Amira, Shadi Atalla, Wathiq Mansoor, Hussain Al Ahmad,
- Abstract summary: This paper introduces a cutting-edge technique for the detection and classification of tomato leaf diseases.
We propose a sophisticated approach within the domain of subspace learning, known as Higher-Order Whitened Singular Value Decomposition.
The efficacy of this innovative method was rigorously tested through comprehensive experiments on two distinct datasets.
- Score: 3.285994579445155
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning has revolutionized the field of agricultural science, particularly in the early detection and management of plant diseases, which are crucial for maintaining crop health and productivity. Leveraging advanced algorithms and imaging technologies, researchers are now able to identify and classify plant diseases with unprecedented accuracy and speed. Effective management of tomato diseases is crucial for enhancing agricultural productivity. The development and application of tomato disease classification methods are central to this objective. This paper introduces a cutting-edge technique for the detection and classification of tomato leaf diseases, utilizing insights from the latest pre-trained Convolutional Neural Network (CNN) models. We propose a sophisticated approach within the domain of tensor subspace learning, known as Higher-Order Whitened Singular Value Decomposition (HOWSVD), designed to boost the discriminatory power of the system. Our approach to Tensor Subspace Learning is methodically executed in two phases, beginning with HOWSVD and culminating in Multilinear Discriminant Analysis (MDA). The efficacy of this innovative method was rigorously tested through comprehensive experiments on two distinct datasets, namely PlantVillage and the Taiwan dataset. The findings reveal that HOWSVD-MDA outperforms existing methods, underscoring its capability to markedly enhance the precision and dependability of diagnosing tomato leaf diseases. For instance, up to 98.36\% and 89.39\% accuracy scores have been achieved under PlantVillage and the Taiwan datasets, respectively.
Related papers
- Small data deep learning methodology for in-field disease detection [6.2747249113031325]
We present the first machine learning model capable of detecting mild symptoms of late blight in potato crops.
Our proposal exploits the availability of high-resolution images via the concept of patching, and is based on deep convolutional neural networks with a focal loss function.
Our model correctly detects all cases of late blight in the test dataset, demonstrating a high level of accuracy and effectiveness in identifying early symptoms.
arXiv Detail & Related papers (2024-09-25T17:31:17Z) - Self-supervised transformer-based pre-training method with General Plant Infection dataset [3.969851116372513]
This study proposes an advanced network architecture that combines Contrastive Learning and Masked Image Modeling (MIM)
The proposed network architecture demonstrates effectiveness in addressing plant pest and disease recognition tasks, achieving notable detection accuracy.
Our code and dataset will be publicly available to advance research in plant pest and disease recognition.
arXiv Detail & Related papers (2024-07-20T15:48:35Z) - Early and Accurate Detection of Tomato Leaf Diseases Using TomFormer [0.3169023552218211]
This paper introduces a transformer-based model called TomFormer for the purpose of tomato leaf disease detection.
We present a novel approach for detecting tomato leaf diseases by employing a fusion model that combines a visual transformer and a convolutional neural network.
arXiv Detail & Related papers (2023-12-26T20:47:23Z) - ArSDM: Colonoscopy Images Synthesis with Adaptive Refinement Semantic
Diffusion Models [69.9178140563928]
Colonoscopy analysis is essential for assisting clinical diagnosis and treatment.
The scarcity of annotated data limits the effectiveness and generalization of existing methods.
We propose an Adaptive Refinement Semantic Diffusion Model (ArSDM) to generate colonoscopy images that benefit the downstream tasks.
arXiv Detail & Related papers (2023-09-03T07:55:46Z) - Early Detection of Late Blight Tomato Disease using Histogram Oriented Gradient based Support Vector Machine [2.3210922904864955]
This research work propose a novel smart technique for early detection of late blight diseases in tomatoes.
The proposed hybrid algorithm of SVM and HOG has significant potential for the early detection of late blight disease in tomato plants.
arXiv Detail & Related papers (2023-06-14T07:58:14Z) - Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
Drug combination therapy is a well-established strategy for disease treatment with better effectiveness and less safety degradation.
Deep learning models have emerged as an efficient way to discover synergistic combinations.
Our framework achieves state-of-the-art results in comparison with other deep learning-based methods.
arXiv Detail & Related papers (2023-01-14T15:07:43Z) - Explainable vision transformer enabled convolutional neural network for
plant disease identification: PlantXViT [11.623005206620498]
Plant diseases are the primary cause of crop losses globally, with an impact on the world economy.
In this study, a Vision Transformer enabled Convolutional Neural Network model called "PlantXViT" is proposed for plant disease identification.
The proposed model has a lightweight structure with only 0.8 million trainable parameters, which makes it suitable for IoT-based smart agriculture services.
arXiv Detail & Related papers (2022-07-16T12:05:06Z) - SSD-KD: A Self-supervised Diverse Knowledge Distillation Method for
Lightweight Skin Lesion Classification Using Dermoscopic Images [62.60956024215873]
Skin cancer is one of the most common types of malignancy, affecting a large population and causing a heavy economic burden worldwide.
Most studies in skin cancer detection keep pursuing high prediction accuracies without considering the limitation of computing resources on portable devices.
This study specifically proposes a novel method, termed SSD-KD, that unifies diverse knowledge into a generic KD framework for skin diseases classification.
arXiv Detail & Related papers (2022-03-22T06:54:29Z) - Unsupervised deep learning techniques for powdery mildew recognition
based on multispectral imaging [63.62764375279861]
This paper presents a deep learning approach to automatically recognize powdery mildew on cucumber leaves.
We focus on unsupervised deep learning techniques applied to multispectral imaging data.
We propose the use of autoencoder architectures to investigate two strategies for disease detection.
arXiv Detail & Related papers (2021-12-20T13:29:13Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Rectified Meta-Learning from Noisy Labels for Robust Image-based Plant
Disease Diagnosis [64.82680813427054]
Plant diseases serve as one of main threats to food security and crop production.
One popular approach is to transform this problem as a leaf image classification task, which can be addressed by the powerful convolutional neural networks (CNNs)
We propose a novel framework that incorporates rectified meta-learning module into common CNN paradigm to train a noise-robust deep network without using extra supervision information.
arXiv Detail & Related papers (2020-03-17T09:51:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.